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Abstract

Climate scientists are in agreement that the timing of greenhouse gas emissions plays a
crucial role in climate change mitigation, with early reductions being more effective than
equally sized emissions reductions in the future. This paper incorporates this scientific
fact within Climate Protection Games, a multi-round collective risk public goods game
that simulates countries’ greenhouse gas emissions reductions over time, by introducing
temporal dynamics that emphasize the importance of early action at mitigating climate
change. A laboratory experiment with 300 participants compares two treatments: the
status quo where emissions reductions are equally weighted across time (Linear), and
another where earlier emissions reductions have a greater impact than equally sized
later emissions reductions, reflecting the greater environmental benefits of early action
(Step). Results indicate that while the likelihood of reaching the necessary threshold to
avert disastrous climate change does not differ significantly between treatments, the Step
treatment leads to higher early emissions reductions and increased individual payoffs,
suggesting welfare improvements. Evolutionary Game Theory simulations corroborate
these findings, showing that early emissions reductions increase individual payoffs. By
highlighting the significance of early emissions reductions, this paper can contribute to
the discourse on climate policy, suggesting that strategies incentivizing early emissions

reductions can result in better environmental and welfare outcomes.
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1 Introduction

“It’s now or never, if we want to limit global warming to 1.5°C. Without
immediate and deep emissions reductions across all sectors, it will be im-
possible.” - Intergovernmental Panel on Climate Change Working Group
IIT Co-Chair Jim Skea (2022).

The provision of many public goods is not the result of contributions by individual
actors at one point in time, but instead over several time periods. Important examples
include donation and crowdfunding campaigns as well as climate change mitigation.
A common element to these examples is that contributions at different time intervals
differentially affect the likelihood of the level of the public good being provided. For
example, on Giving Tuesday —traditionally the Tuesday after Thanksgiving where peo-
ple are encouraged to give back in whatever way they can— NGOs and crowdfunding
platforms offer matching pledges/donations, effectively increasing the marginal benefit
of a donation. Relatedly, to effectively mitigate climate change by reducing green-
house gas emissions, not only is the magnitude of emissions reductions important, but
also the timing: earlier emissions reductions are more effective at mitigating climate
change than equally sized reductions in the future, as the environmental damages of
greenhouse gases are based on cumulative emissions (Shukla et al.; 2022).

Little is understood about how the differing marginal returns to public goods con-
tributions affect the intertemporal provision of public goods. On the one hand, a
higher marginal benefit can induce greater contributions. However, this can come at
the expense of future contributions (e.g., a dip in donations in the weeks after Giving
Tuesday). Alternatively, if individuals want to contribute a fixed amount to the public
good (akin to the daily income targeting of taxi drivers in Camerer et al. (1997)), they
may wait for time periods when contributing results in a lower marginal cost (e.g.,
Giving Tuesday). While this benefits the individual (by reducing the marginal cost of
their contribution), it does not affect the aggregate contribution to the public good.

In this paper, I experimentally investigate the impact of temporal contribution dy-
namics on the (voluntary) provision of a threshold public good. For this, I compare
two cases: one in which the value of contributions to the public good does not depend
on the timing on the contribution, and one in which it does. The value of contributions
in the second case is a mean-preserving spread, with unchanged symmetric Nash Equi-

libria. I explore the impact of whether the timing of contributions matters or not on



the timing of contributions, aggregate contributions to the public good, likelihood of
reaching the threshold to ensure provision of the public good, and free-riding behavior.
To guide the analysis, I develop a theoretical model that incorporates intertemporal
contribution dynamics with the multiple rounds public goods game framework of Marx
and Matthews (2000). In line with theoretical predictions, individual contributions to
the public good are larger in rounds when the marginal cost is lower, and vice versa.
Similarly, the likelihood of an individual free-riding is lower when the cost of doing so
—in the form of foregone contributions to the public good— is higher. At a group
level, introducing temporal contribution dynamics alters the contribution patterns,
compared to the case where the timing of contributions does not matter. This has a
marginally insignificant effect on the likelihood of reaching the threshold to ensure the
public good is provided. Nevertheless, introducing temporal contribution dynamics
improves individual’s welfare, as measured by their experimental payments. Evolu-
tionary Game Theory simulations that model how strategies evolve over generations in
strategic, repeated interactions reproduce these results, thus providing further support

for the theoretical model’s predictions.

1.1 Contribution to the Literature

This paper contributes to the literature on multi-round public goods games, with a
particular focus on threshold public goods games (see Croson and Marks (2000) for
an overview). The laboratory experiment is an adaptation of the Climate Protection
Game (Milinski et al., 2008), which has been highly cited and extended to include
wealth inequality (Milinski et al., 2011; Burton-Chellew et al., 2013; Brown and Kroll,
2017; Tavoni et al., 2011), threshold uncertainty (Barrett and Dannenberg, 2013; Dan-
nenberg et al., 2015; Brown and Kroll, 2017), and differing degrees of vulnerability
to climate change damages (Burton-Chellew et al., 2013). However, no paper has
explored the effect of temporal contribution dynamics in the CPG, despite the scien-
tific evidence that earlier emissions reductions are more effective at mitigating climate
change than future emissions reductions (IPCC, 2022), and the wide-ranging economic,
environmental, and health-related benefits of earlier emissions reductions (Hamilton
et al., 2017; Bosetti et al., 2012; Goulder, 2020). This paper addresses this gap in
the literature, by comparing contribution dynamics across two treatments: one with
intertemporal contribution dynamics, and one without. As such, this paper also con-

tributes to other experimental games simulating climae change mitigation, including



the Intergenerational Goods Game (Hauser et al., 2014), Climate Negotations (Bar-
rett and Dannenberg, 2012), and the Persistent Carbon climate game (Calzolari et al.,
2018).

The second literature this paper contributes to is on the theoretical representa-
tions and evolutionary game theoretic simulations of multi-round public goods games.
The theoretical model builds on Marx and Matthews (2000) by incorporating tempo-
ral dynamics through a round-specific weighting function. Several studies have con-
ducted evolutionary game theoretic simulations of the threshold public goods games
(Abou Chakra and Traulsen, 2012; Hilbe et al., 2013; Santos et al., 2012). These
simulations have been extended to evaluate how strategies respond to changes in un-
certainty (Abou Chakra et al., 2018), risk and group sizes (Santos and Pacheco, 2011),
wealth inequality (Vasconcelos et al., 2014; Abou Chakra and Traulsen, 2014), and
changes in governance institutions (Vasconcelos et al., 2013). The EGT simulations
in this paper extend the literature by evaluating the role of temporal dynamics in the
timing of contributions and the evolution of strategies.

UPDATE: The structure of this paper is as follows. Section 3 describes the ex-
perimental design, while Section 4 presents the results, including those from the EGT
simulations. Section 5 concludes. The Appendix contains a theoretical model that
incorporates temporal dynamics within Marx and Matthews (2000), details on the

evolutionary game theory simulations, and additional results.

2 Experimental Design and Theoretical Predictions

My experimental design allows me to study the role of intertemporal contribution
dynamics on the provision of public goods in the presence of a threshold. Specifically,
in each of the two treatment arms, five players are randomly paired to form a group.
Across nine rounds, players can contribute part of their initial endowment to a public
good. If after the nine rounds, aggregate contributions to the public good exceed a pre-
specified and communicated threshold, the public good was provided. If the threshold

was not met, the public good was not provided.
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Climate scientists are in agreement that in order to mitigate the risks of climate change,
countries need to reduce greenhouse gas emissions. The latest Intergovernmental Panel
on Climate Change (IPCC) report calculates that the carbon budget - reflecting the
amount of C'Oy that can still be emitted while limiting the temperature rise to 1.5°C
with 50% probability - is 500 Gt C'O,, before reaching net zero C'O emissions to ul-
timately halt global warming (Shukla et al., 2022)." The IPCC report also highlights
that “more rapid near-term emissions reductions allow reaching net zero C'O; at a later
point in time”. This underscores that earlier emissions reductions are more effective at
mitigating climate change than equally sized reductions in the future, as the environ-
mental damages of greenhouse gases are based on cumulative emissions (Shukla et al.,
2022). Other papers have also emphasized the wider-reaching economic, environmen-
tal, and health-related benefits of earlier emissions reductions (Hamilton et al., 2017;
Bosetti et al., 2012; Goulder, 2020).

Laboratory experiments, such as the Climate Protection Game (CPG, Milinski
et al. (2008)), have simulated countries’ reductions in C'O, emissions over time as
a collective risk threshold public goods game. While these experiments capture the
role of the carbon budget in C'O, emissions reductions by introducing a threshold that
triggers disastrous climate change, they do not take into consideration when reductions
in C'O, emissions are made - despite the importance of timing. I address this limitation
by introducing temporal dynamics within the Climate Protection Game (CPG) that
more accurately reflect the role of the timing of emissions reductions in climate change
mitigation.

I conduct a lab experiment with 300 university students, who are pooled into groups
of five. Groups are randomized across two treatment arms, Linear and Step. The Lin-
ear treatment arm replicates the CPG of Milinski et al. (2008), where contributions to
the public good (equivalent to reducing C'O; emissions in the real world) are weighted
equally across all rounds of the game. Extending this set-up to climate change mitiga-
tion implies that reductions in C'Oy emissions today are equally effective at mitigating
disastrous climate change as equally-sized emissions reductions in the future, in con-
trast to scientific reports (Shukla et al., 2022). The Step treatment arm incorporates
the intertemporal effects of emissions reductions, with contributions in earlier rounds

yielding larger benefits than contributions in later rounds, reflecting the environmental

'The primary focus is placed on CO, as it represents the largest share of GHG emissions, has a
long half-life, and plays a significant role in the trapping of heat in the Earth’s atmosphere (Solomon
et al., 2009).



benefits of earlier emissions reductions. This is done through a mean-preserving and
decaying weighting factor that ensures symmetric pure Nash Equilibria are unchanged
across the two treatment arms.

Results of the lab experiment show that while the likelihood of reaching the thresh-
old required to avert disastrous climate change does not differ across the two treat-
ments, the contribution patterns differ substantially. Compared with groups in the
Linear arm, groups in the Step arm contribute more in earlier rounds of the Climate
Protection Game, and subsequently reduce their contributions in later rounds. Pay-
offs are statistically significantly higher for groups in the Step arm, suggesting welfare
improvements as a result of emphasizing earlier contributions to the public good.

The findings from the lab experiment are rationalized through a theoretical model
that incorporates temporal dynamics within the model of Marx and Matthews (2000),
and are replicated through Evolutionary Game Theoretic (EGT) simulations of the
lab experiment that model how strategies evolve over generations in strategic, repeated
interactions. Players in the Step EGT simulation contribute more in earlier rounds than
players in the Linear EGT simulation, before reducing contributions afterwards. The
likelihood of reaching the threshold is not statistically significantly different between
the two simulated treatments, but payoffs are substantially higher in the Step EGT
simulation - in line with the results from the lab experiment.

This paper contributes to the literature on threshold public goods games (see Cro-
son and Marks (2000) for an overview), particularly those that simulate climate change
mitigation including the Climate Protection Game developed by Milinski et al. (2008).
The CPG has been highly cited and extended to include wealth inequality (Milinski
et al., 2011; Burton-Chellew et al., 2013; Brown and Kroll, 2017; Tavoni et al., 2011),
threshold uncertainty (Barrett and Dannenberg, 2013; Dannenberg et al., 2015; Brown
and Kroll, 2017), and differing degrees of vulnerability to climate change damages
(Burton-Chellew et al., 2013). However, no paper has explored the effect of temporal
contribution dynamics in the CPG, despite the scientific evidence that earlier emis-
sions reductions are more effective at mitigating climate change than future emissions
reductions (IPCC, 2022), and the wide-ranging economic, environmental, and health-
related benefits of earlier emissions reductions (Hamilton et al., 2017; Bosetti et al.,

2012; Goulder, 2020). This paper addresses this gap in the literature, by comparing

20Other examples include the Intergenerational Goods Game (Hauser et al., 2014), Climate Nego-
tations (Barrett and Dannenberg, 2012), and the Persistent Carbon climate game (Calzolari et al.,
2018).



the Linear and Step treatment arms. While coordinated early contributions in the
Step treatment arm can improve efficiency and increase the likelihood of reaching the
threshold, “last-ditch efforts” to mitigate climate change are less likely to be successful.

The second literature this paper contributes to is on the theoretical representa-
tions and evolutionary game theoretic simulations of multi-round public goods games.
The theoretical model builds on Marx and Matthews (2000) by incorporating tempo-
ral dynamics through a round-specific weighting function f(t). Several studies have
conducted evolutionary game theoretic simulations of the Climate Protection Game
(Abou Chakra and Traulsen, 2012; Hilbe et al., 2013; Santos et al., 2012). These
simulations have been extended to evaluate how strategies respond to changes in un-
certainty (Abou Chakra et al., 2018), risk and group sizes (Santos and Pacheco, 2011),
wealth inequality (Vasconcelos et al., 2014; Abou Chakra and Traulsen, 2014), and
changes in governance institutions (Vasconcelos et al., 2013). The EGT simulations
in this paper extend the literature by evaluating the role of temporal dynamics in the

timing of contributions and the evolution of strategies.

3 Experimental Design

I conduct a laboratory experiment of a multi-round threshold public goods game with
and without temporal contribution dynamics. The experiment is based on the Cli-
mate Protection Game (Milinski et al., 2008), which simulates coordination between
countries over time to reduce C'Oy emissions to prevent catastrophic climate change.

Across two treatments, there are five players per group (partner matching), each
endowed with 36 Monetary Units (MU, MU1 = €0.50). Players can simultaneously
contribute up to MU4 from their own endowment to the public good per round, and
the game lasts 9 rounds.? Contributions made to the public good (called the Climate
Pot) in round ¢ are multiplied by 3(t) before being added to the Climate Pot." After
each round, players are shown the contributions of all group members, the total group
contribution to the Climate Pot, and their remaining savings (equaling their endowment
minus their total contributions).

The threshold group contribution at which disastrous climate change is averted is

3Contrary to Milinski et al. (2008), players can contribute MU{0,1,2,3,4}, and not only
MU{0,2,4}.

4For example, if a player contributes MU4 in round ¢, it will count as MU (4 - B (t)) towards the
Climate Pot.



MU90. If a group reaches or exceeds MU90, players keep their remaining savings.® If
the group fails to reach the threshold, players face a 70% probability of losing their

savings. In the remaining 30% of cases, players keep their savings.

Treatment 1: Linear

This treatment resembles the Milinski et al. (2008) CPG setup. Contributions to the
Climate Pot are Linear, meaning they are not scaled (8(t) =1 Vt e {1,...,9}).

Treatment 2: Step

This treatment differs from the Linear design, with 5(t) decreasing over time:

1.5 ¢t={1,2,3}
Bt)=1<1.0 t=1{4,56
05 t={7,809}

Except for the decaying Step (), the setup is identical to Linear. The decreasing /3()
means that the returns to contributions decay: contributions in earlier rounds count for
more in the provision of the public good, and reaching the threshold, than contributions
in later rounds. This more accurately captures conclusions from scientific reports
on climate change mitigation that document the greater impact of immediate C'O,
emissions reductions at mitigating climate change than equally sized future emissions
reductions (Warren et al., 2013; Ciavarella et al., 2017; IPCC, 2022).

Nash Equilibria

There are two, Pareto-ranked pure symmetric Nash Equilibria for risk-neutral actors
in both treatments: (i) players contribute 0 to the public good in all rounds, and fail
to reach the threshold, or (ii) players contribute 2 to the public good in all rounds,
and reach the threshold. The expected payoffs for the Nash Equilibria are MU10.8 and
MU18, respectively. Additionally, there are infinitely many asymmetric equilibria, as

discussed in Appendix A.3.1.

SMilinski et al. (2008) used 6 players over 10 rounds, with a threshold of 120 and endowment of
40. I deviate from this setup for budgetary reasons. However, for both my setup, and that of Milinski
et al. (2008), in order to reach the threshold, the average contribution by each player is half their
endowment.



Conditional on reaching the threshold, the most efficient contribution pattern for
the Step treatment consists of each player contributing 4MU in each of the first 3
rounds, and OMU otherwise.® For the Linear treatment the timing of contributions

does not matter.

Experimental Procedure

The experiment was conducted in June 2022 and May 2023, at Tilburg University’s
CentERlab, and programmed using oTree (Chen et al., 2016). 300 participants were
divided into 60 groups, evenly split across BOTH treatments. Participants could not
identify or communicate with each other. 50% of the participants identified as female,
and their average age was 21.89. The experiment lasted 30 minutes, and the average

compensation was €11.99.

4 Results

Groups in the Linear treatment had a mean aggregate contribution of 80.80 + 3.24
(mean + SE), with 53% of the groups reaching the threshold of 90. In the Step
treatment, the mean aggregate contribution was 89.87 + 0.98, and 63% of groups
reached the threshold (see Figure 1).” While the difference in the likelihood of reaching
the threshold (p=0.26, n1=30, ny=30, Binomial Test) is not statistically significantly
different, the difference in aggregate contributions (p=0.11, ny=30, ny=30, two-sided
Mann-Whitney U) is marginally insignificant, offering suggestive evidence that the Step
treatment increased the likelihood of groups reaching the threshold.

Despite statistically insignificantly different aggregate contributions, the contribu-
tion paths differ substantially between groups in the Linear and Step treatments (n
= 270, ny = 270, p<0.01, K-S test).® Figure 2a depicts the average cumulative contri-
butions across the nine rounds for the Linear and Step treatments. The contribution
path in the Linear treatment — in line with Milinski et al. (2008) and other papers

— increases linearly. The cumulative contribution path of the Step treatment, on the

6This results in savings of 24MU per player.

"These findings are slightly higher than those in Milinski et al. (2008), who find that only 50%
and 10% of groups reach the threshold when the probability of losing their savings was 90% and 50%,
respectively. An explanation is the smaller group size (5 vs. 6 members per group) in my study.

811 = no = 270: 30 groups per treatment, nine rounds per group.
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Figure 1. Likelihood of Reaching Threshold, by Treatment

other hand, is concave — characterized by high contributions in earlier rounds that
subsequently decay.

The difference in cumulative contribution paths between Linear and Step can be
due to two competing explanations. The first explanation is that groups in both treat-
ments contributed similar amounts to the Climate Pot across all rounds, however these
contributions were weighted by 5 = {1.5,1.0,0.5} in the Step treatment. The decaying
weights will then naturally lead to the observed concave cumulative contribution path.
The competing explanation is that groups in the Step treatment contributed more than
groups in the Linear treatment in rounds where the weighting factor was greater than
1, and less in rounds where the weighting factor was less than 1.

Figure 2b plots the average unweighted group contribution per round for Linear and
Step treatments.” In line with the second explanation, groups in the Step treatment
contribute statistically significantly more in the first three rounds, when contributions
are weighted by 1.5 (38.43 + 1.44 vs. 27.73 4+ 0.71; p<0.01, n1=30, ny=30, two-sided
MWU), and statistically significantly less in the last three rounds, where contributions
are weighted by 0.5 (16.10 + 2.33 vs. 25.77 £+ 1.95; p<0.01, n1=30, ny=30, two-sided
MWU).

9Unweighting entails dividing the individual’s contribution by 3(¢). This involves no transformation
for Linear, while for Step, contributions are divided by {1.5,1.0,0.5}, respectively.

11
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Figure 2. Group Contributions by Treatment

Further support comes from looking at individual player contributions in the first
round. While contributions in rounds 2-9 can be influenced by other group members’
actions, contributions in the first round are more likely to reflect players’ preferences.'’
Compared to the Linear treatment, individuals in the Step treatment were less likely
to contribute nothing to the public good (0.02 £ 0.01 vs. 0.09 + 0.02; p=0.01, n;=150,
ny=150, two-sided t-test), and their unweighted contributions were higher (2.63 4 0.09
vs. 1.85 + 0.06; p<0.01, n;=150, ny=150, two-sided t-test)."!

While both treatments had identical pure symmetric Nash Equilibria, the resulting
differing contribution patterns led to different payoffs: The average payoff for groups
in the Step treatment was MU14.91 + 1.48, compared with MU13.07 + 1.08 for the
Linear treatment (p=0.02, n;=30, ny=30, two-sided MWU)."? As such, rewarding
earlier contributions to the Climate Pot resulted in a welfare-improving reallocation of

contributions, without altering the likelihood of reaching the threshold.

10An alternative explanation could be confusion. However, there is no correlation between first-
round contributions and performance on the comprehension test (p = —0.016,p = 0.79).

" Conditional on cooperating, first round unweighted contributions are statistically significantly
larger for Step than Linear (2.68 £ 0.08 vs. 2.03 + 0.05; p<0.01, n1=150, no=150, two-sided t-test).

12The expected payoff - equal to ones remaining savings in case the threshold was met, and equal
to 70% of the remaining savings otherwise, was also statistically significantly different across Step and
Linear groups: MU18.08 £+ 0.66 vs. MU16.71 £+ 0.39, p=0.06, n;=30, n2=30, two-sided MWU).

12



4.1 Evolutionary Game Theory Simulations

I use Evolutionary Game Theory (EGT) to study the role of temporal dynamics within
Climate Protection Games in the evolution of strategies (Weibull, 1997; Hofbauer and
Sigmund, 1998; Hilbe et al., 2013). For both treatments, I run 150 iterations of 100,000
generations of the game. Per generation, each player participates in up to 1000 Climate
Protection Games, randomly paired with other players that follow different strategies.
After each generation, a player’s average payoffs are calculated, with strategies that
result in higher payoffs having a higher probability of being passed on to the next
generation following a Wright-Fisher process. Appendix B outlines the parameters of

the EGT simulations in more detail.
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Figure 3. Evolutionary Game Theory Simulations

Figure 3 reproduces Tables 1 and 2b for the EGT simulations. As Figure 3a illus-
trates, in the EGT simulations the groups are far more likely to reach the threshold
than in the lab experiment. The likelihood of reaching the threshold is statistically
insignificantly different across the two treatments (0.96 &+ 0.01 vs. 0.95 + 0.01; p=0.16,
n1=150, ny=150, two-sided t-test). Figure 3b presents the unweighted group contribu-
tions averaged across all iterations and generations, for the EGT simulations of both
the Linear and Step treatments. The pattern of the Step treatment is remarkably
similar to that of the lab participants, characterized by high initial contributions that
decay after round 3. While the pattern of contributions in the Linear simulation does

not reflect those among lab participants, the statistically significant differences in con-
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tributions across rounds between the EGT simulations of Linear and Step support the

findings of the lab experiment.

5 Conclusion

The Climate Protection Game has been used to simulate the ability of countries to
coordinate to reduce greenhouse gas emissions over time in order to mitigate disas-
trous climate change. Following the initial paper by Milinski et al. (2008), studies have
extended the CPG to measure the effect of differing initial conditions of actors and
proposed policies. However, these studies overlooked a significant fact of the science of
climate change mitigation: earlier C'Oy emissions reductions are more effective at mit-
igating climate change than equally-sized reductions in the future because greenhouse
gas emissions are a stock pollutant (Shukla et al., 2022).

I address this limitation by introducing temporal dynamics within the CPG. Com-
pared with the traditional CPG setup, actors in the Step treatment arm contribute
more in earlier rounds when they get a bigger bang for their buck. These earlier con-
tributions decay in later rounds, and do not affect the level of overall contributions.
While the likelihood of reaching the public good threshold required to avert disastrous
climate change is unchanged, payoffs - a proxy for welfare - are higher.

Given the importance of early contributions in climate change mitigation, an in-
teresting avenue for further research is to better understand how to foster early stage
coordination and contributions. It is unclear whether the insights gained from stud-
ies building on the Climate Protection Game by Milinski et al. (2008) can directly
translate to a dynamic setting with temporal dynamics that more accurately reflects
the scientific knowledge underlying climate change mitigation. Furthermore, dynamic
CPGs can be extended to evaluate further climate change mitigation policies, such as
the rachet-up mechanism (Alt et al., 2023), or coalitions (Bosetti et al., 2017).

14
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Online Appendix:

A Theoretical Framework: Threshold PGGs with
Weights

The game has a set of players N = {1,...,n}, with n > 2. Each player is endowed with
private good E;, which can be used to contribute z;(¢) to a public good in each round ¢ > 1.
The contribution horizon is [1,7], where T < oo. Contributions z;(t) are non-refundable
and multiplied by a round-specific weight B(t) > 0, capturing the temporal dynamics of
contributions.'?

The round ¢ contribution vector is defined as z(t) = (21(t), ..., 2 (t)), with the entire con-
tribution sequence being {z} = {z(t)}z_;o. Individuals observe their own past contributions

and aggregate of the others’ contributions, let Z(t) = >_ .y 2;(t), and Z_;(t) = Z(t) — zi(1).
=1 14
7=0"

Individual payoffs are determined by individual and aggregate contributions at the end

Player i’s personal history at the start of round ¢ then is: ki~ ! = (2i(7), Z—i(T))

of the contribution horizon, T. Player i’s individual unweighted cumulative contribution at
the end of round ¢ is Z(t) = Y, ., zi(7) and %(T) = Z;, while the weighted cumulative
contribution is Z;(t) = > ., B(7)zi(7) and Zi(T) = Z;. The aggregate group unweighted
and weighted cumulative contribution, henceforth referred to as the unweighted and weighted
cumulation, are Z(t) = > jen Zit) = Z?:oz(t) and Z(t) = > jen Z(t) = Z;f:o B(t)z(t),
respectively.

The benefit Player i receives after T’ rounds is f; (Z (T)), which depends on the weighted
group cumulation at the end of the contribution horizon. Contribution costs enter the utility
function quasilinearly: U;({z}) = f,(Z(T)) — 2,(T).

fi(Z) is a step benefit function where f;(Z) = Y; = g(E;, 4, p) until Z exceeds a threshold
value Z*, beyond which individual benefits jump to f;(Z) = V; = h(E;, ;). Contributions

Z;(t) are non-refundable.

Y; = g(Ei, 4i,p) for Z < Z*

filZ) = _

13Note that setting B(t) = 1 Vt results in no temporal dynamics, and simplifies to the setup of
Marx and Matthews (2000).

14The framework can be extended to games where individual contributions are publicly observed,
such that hl~! = (zi(r),zjeN7j¢i(T)):;l(), see Marx and Matthews (2000). Note it does not matter
whether players observe weighted or unweighted contributions, as long as §(7) is known to all players
forall T <t—1.
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Where ¢'(2;) < 0;¢'(E;) > 0;1/ (%) < 0;/(E;) > 0; h(Z|E:) > g(Z|E;) > 0 VZ < Ej;
and h(%;) = g(%;) = 0 for £, = E;.'> Hence the benefit jump from reaching the threshold is
Vi —Y; > 0.1% Similar to Marx and Matthews (2000), I focus on cases where free-riding is an
issue, meaning that no player has the incentive to complete the pub}kic goods project alone,

but aggregate utility is greater if the project is completed: V; < < Ejvzl Vi Vie

-
max{B(t)}
N, Vt, equivalent to equation (2.7) in Marx and Matthews (2000).

A.1 One-Round Game

Dropping time notation, the n players each contribute z; of their endowment F; to the
public good, yielding a contribution vector z, aggregate contributions Z (= B z), and payoffs
fl(Z) — 2! If the other group members have contributed Z_; > Z* and thus met the
public good’s threshold, player i’s best response is to contribute 0.'® However if the others’
contributions are such that Z_; < Z*, player i’s best response is to either contribute zero,
or z; = l(Z - Z_i). Player ¢ will contribute z; > 0 to reach the threshold if the marginal

benefit of doing so exceeds the marginal cost:

Vi(z) — Yi(0) > ;(Z* —73)

8- (Vi(z) - Yi(0)) > Z2* — Z_,
Hence player i will only contribute z; > 0 and ensure the provision of the public good if

the contribution is less than the player’s critical contribution, ¢f = 8- (Vi(z) — ¥;(0)) =
B(h(z:) — g(0))."

Hence, for Z_; < Z*, player i’s best response function is:

1 - -
—(Z*—Zy) 2" —-Z_;<c

5(Z) =4 P (1)
0 otherwise

5Note, fl(Z) can be extended such that Y; and V; both depend on cumulative weighted group
contributions Z, so long as h(Z) > g(Z) VE;, %; and hence lim_, ,., h(Z) > lims_, ,._ g(Z)

I6For simplification, F; will be dropped from notation. The endowment may be important when
players have differing initial endowments (like in Milinski et al. (2011)), however this is not the case
in this paper. Furthermore, p, the probability of keeping ones savings if the threshold is not reached,
will also be dropped from notation. However, as Milinski et al. (2008) illustrates, the probability of
keeping ones savings impacts individual’s contributions and hence likelihood of reaching the threshold.

"Note that in a one-round game, z; = £; by definition.

18Where Z_; = > jen.jzi B - #j, the weighted aggregate of the others’ contributions.

9Note that the critical contribution ¢} refers to the weighted contributions z; = 3 - 2;.
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Nash Equilibria

Z
Given V; < — < Z;VZI V;  for all i € N, one Nash Equilibrium is for every player to

contribute 0, and the threshold is not met.

Proposition 1: One Nash Equilibrium of the One-Round Game is for each

player to contribute 0, z = (0, ..., 0).

Proof: One kind of deviation must be considered: a player unilaterally decides to con-
tribute 0 < z;0 < E; such that 5 - z;o = Z*. Their payoff is then U;(zi9) = V; — 2. Given
Vi(zio) < z = Vi(zi0) < zio, the individual’s payoff would be negative, and hence they are
better off not deviating from the Nash Equilibrium of contributing 0. Intermediate values
of z; (0 < z; < zjp) are inferior as g(2;) < h(%;) VZ; < E;, and are hence not a Nash
Equilibrium.

Additional Nash Equilibria with positive aggregate contributions exist as long as two

conditions are met:

Proposition 2: The One-Round Static Game has further Nash Equilibria of

contributions (21, ..., z,) that satisfy: 1) 8->"7" | z; = Z*, and 2) 0 < z; < %

Proof: Four kinds of deviations need to be considered.

NE
z;'"), such

Firstly, consider a player i that contributes less than the Nash Equilibrium (

that 8->" 12 < Z* and 0 < z; < cg The player contributes z;; < le B resulting in
a benefit function fZ(Z) = ¢g(z11), and hence payoff U;(z;1) = g(zi1) — zi1- As ¢'(z) < 0,
Yi(0) > Yi(zi1). Therefore, the player is better off contributing 0 to the public good. If the
player contributes z;2 = 0 to the public good, U;(z;2) = ¢(0) —0, which is greater than U;(z;1).

Secondly, consider a player i*that contributes more than the Nash Equilibrium, such that
E Z?:l zi > Z* but 0 <z < % Player ¢ contributes z;3 > zZN E_the Nash Equilibrium level

of contribution. For both z;3 and zZN E_the threshold is met, and hence fZ(Z ) = Vi(%i). The

corresponding payoff functions are: U;(z;3) = Vi(zi3) — zi3 and Ui(zZNE) = VZ(ZZNE) — ZZNE.

As z3 > ZZNE and V/(z;) <0, Us(zi3) < Ui(zZNE), and hence contributing z;3 > ZZNE is not a
profitable deviation.

Thirdly, consider a player i that contributes more than the Nash Equilibrium (z;4 > zNF),

*

such that 3 - Z?:l zi = 2%, but 0 < z4 > % Player ¢ has contributed more than the benefit
jump from reaching the threshold, Vj(z;4) — Yi(0). Hence, U;(zi1) = Vi(zia) — zia < Y;(0) =
Ui(z; = 0), and so the player is better off contributing 0 to the public good.

Fourthly, consider a player i that contributes more than the Nash Equilibrium (z;; >

*

c:
zNE) such that 8-Y1" | 2 > Z*, but 0 < z;5 > —-. This is a combination of the second and

' )
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third deviation case, and hence does not increase the players’ utility, compared with the case

where they contribute zN E

A.2 Multi-Round Game

Re-introducing time notations, {z} = {(z1(¢), ...,zn(t))}tTZO is a sequence of non-negative
contributions by i = 1,...,n players across t = [0,T] rounds. Similar to the one-round game,
players must decide every round whether and how much to contribute to the threshold public
good. These decisions are made weighing off the marginal benefits and costs, which in turn
are influenced by previous contributions to the public good - both by other players and the
player themselves. In the final round T, previous weighted contributions by the group are
Z ZleN B(7) - zi(7), and the other players contributed B(T) - Z_;(T) in round T. If
these cumulative weighted contributions are less than Z*, individual ¢ must decide whether
to contribute sufficiently to ensure the provision of the public good or not. The marginal cost
of doing so is the total unweighted contributions outstanding to reach the threshold, divided

by the weighting factor in round T, 3(T):

1
B(T)

A M’ﬂu

Z B(r — B(T) - Z_4(T))
0ieN

The marginal benefit is the individual payoff of reaching the threshold as a result of covering
the outstanding contributions required to reach the threshold, minus the individual payoff if
the player contributes nothing to the public good in round T, and the group falls short of
the threshold:

T T ) ) T
%(Zoz ZZN 2i() = B(T) - Z-4(T))) = Yi( > 2i(7))

Using backward induction, the decisions of individuals in rounds ¢ < T can be determined

following the same evaluation of marginal costs and benefits.

Nash Equilibria

One Nash Equilibrium is that every player contributes zero in each of the T' rounds of the
game. In this case, aggregate contributions are zero, the public good is not provided, and an
individual’s payoff is ¥;(0). Further Nash Equilibrium outcomes are ones where the outcome is
wasteless, such that Z;f:o Y ien B(t)-zi(t) = Z*, and no player wishes to deviate unilaterally,
if deviation is punished with the grim-g strategy profile (Marx and Matthews, 2000). Under
this strategy profile, each player plays g in every round, where {g} = {(¢1(?), ..., gn(t))}tTZO
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unless Z(t) # G(t), after which each player maximally punishes the deviation and contributes
zi(T) = 0 for 7 > t. For notation purposes, G_;(t) = G(t) — ¢i(t).

Marx and Matthews (2000) demonstrate why longer contribution periods can result in
larger contributions to the public good, as lump-sum contributions can be spread over mul-
tiple rounds and made contingent on past contributions. For a multi-round threshold public
goods game with a benefit function f(Z), a player will not deviate from the grim-g profile in
the first round if

[~
S
<

Y;(0) < Vi(g:) — (2)

t=0
The left hand side of Equation 2 captures the player’s benefit from deviating from the grim-
g strategy in the first round. If they contribute 0 instead of g;(0), the other players will
contribute 0 in all future rounds, and hence aggregate contributions are G_;(0), falling short
of the threshold Z*.?’ The right hand side is the expected payoff of adhering to the grim-g
strategy, as a result of which the threshold Z* is reached. The generalization of Equation (2)
to round t < T is:

t—1 T t—1
m(zgm) Zgz < Vilg) = Y gi(m) = Y i)
=0 7=0

T=t

Zgi( < Vi(g:) YE(Zgz ) (3)

where g; is the defined sequence of player i’s non- negative contributions to the public good
in line with the grim-g strategy, and hence Z _; 9i(7) refers to player i’s contributions in
rounds [t, T] in line with the strategy. As such, the left hand side of Equation (3) captures
the continuation cost of following the grim-g strategy, and is monotonically decreasing in t.
The right hand side is the continuation payoff of not deviating from the grim-g strategy. It is
monotonically increasing in ¢: while Vj(g;) is time-invariant, Y(ET 0 9i(7)) is monotonically
decreasing in ¢, as Y/(g;(t)) < 0, and ZTZO gi(7) is the aggregate of contributions in rounds
[0,t —1].%

As the left-hand side of Equation (3) is monotonically decreasing in ¢, and the right-hand

20Grim-g strategies are only a Nash Equilibrium if they are wasteless, that is, if they exactly meet
the threshold: Z* = ZtT:o B(t)G(t). Deviations from the strategy by contributing less will result in
aggregate contributions that fall short of the threshold.

2IThe right hand side of Equation (3) is strictly increasing in ¢ if g;(7) > 0 V7 > 0. This is in
line with simulations in Hilbe et al. (2013), who show that dominant strategies are characterized by
delayed contributions, with positive contributions in every round.
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side is monotonically increasing in ¢, the incentive to deviate from the grim-g strategy is
monotonically decreasing in ¢, and hence highest at ¢ = 0. This is further supported by
Marx and Matthews (2000), who argue that the grim-g strategy profile favours small initial
contributions, with the majority of contributions made in the future, and hence contingent
on other player’s past adherence to the grim-g strategy profile.

Equation (3) specifies the under-contributing constraint, however Marx and Matthews
(2000) show that a strategy profile g must also satisfy the over-contributing constraint in order
to be a Nash equilibrium, enforced by the grim-g strategy’s maximal feasible punishment.
The over-contributing constraint guarantees that player ¢ does not have the incentive to

prematurely ensure the public good’s threshold is met in round t < T

t t

Vi(zt:gi(f) + ﬁgt) 2= Y BGr)]) - th) (z -3 B(nEm) - tigi(f)
=0 =0

=0

T

t—1
<Vilgi) = Y _9i(1) = > ail7)
T=t 7=0

T
< Vilgi) — Zgi(T) (4)

The right hand side again captures the continuation payoff of not deviating from the
grim-g strategy, and is monotonically increasing in ¢. The left hand side captures the payoff
from unilaterally ensuring the threshold is met in round ¢ < T. This captures the utility
from reaching the threshold V; as a result of the larger individual contribution (recall that
V/(z;) < 0). This inequality depends on 3(t): for a §(¢t) >> 1, an individual may have the
incentive to unilaterally ensure the public good is provided. Similarly, for a 0 < 5(t) < 1, an
individual has less incentive to unilaterally ensure the threshold is met.

While the role of the round specific multiplication factor 5(t) is not directly obvious from
the under- and over-contributing constraints, it plays an important role. For example, the
grim-g strategy profiles described by Marx and Matthews (2000), consisting of small initial
contributions and larger, later contributions may be cut short by one player unilaterally
ensuring the provision of the public good in round ¢ < T if B(t) is sufficiently large such
that the inequality in Equation (4) no longer holds. Another example is the “fair share
commitment” Nash Equilibrium of Hilbe et al. (2013) where players contribute nothing in

the first half of the game’s rounds, and maximally contribute in the second half of the game.
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If5(t)y<1 vt> %, the group will no longer reach the threshold.

Perfect Bayesian Equilibria

Marx and Matthews (2000) show that the Nash Equilibria outcomes defined above are also
Perfect Bayesian Equilibria (PBE) outcomes, if either of the following two conditions are

met:
1. ¢ =c} foralli € N, or
2. ¢} = ¢, and both g1(t) > g¢i(t) and g2(t) > gi(t) forall t > 0 and i = 3,...,n.

Condition 1 means that all individuals have the same critical contribution ¢}, while condition
2 specifies that the two largest critical contributions need to be the same, and belong to
the two individuals who have contributed the most in every round. Under condition 1, the
equilibrium outcomes are also a Subgame Perfect Equilibrium (SPE), as shown by Marx and
Matthews (2000).

A.3 Theoretical Framework: Climate Protection Games

The CPG is a multiple-round threshold public goods game. The game’s set of players is
N ={1,...,n}, with n > 2. Each player is endowed with private good E;, which can be used
to contribute z;(¢) to a public good (the Climate Pot) in each round ¢ > 1. The contribution
horizon is [1,7T], where T' < oo. Contributions 2;(t) are non-refundable and multiplied by a
round-specific 5(t) > 0 that captures the temporal dynamics of contributions.?

Individual 4’s investment in the Climate Pot, z;(t), must satisfy 0 < z;(t) < aE;, where
0 < a < 1 limits the amount individual ¢ can invest per round. Furthermore, Zle zi(t) < E;
(implying o - T < 1).

Z(t) = B(t) >_jen #(t) is the sum of contributions to the Climate Pot by the set of
individuals N in round ¢. 5(t) > 0 is a scaling factor whereby contributions made to the
Climate Pot can be scaled up (5(t) > 1), down (5(t) < 1), or not scaled (8(t) = 1).

Individual monetary payoffs depend on whether the sum of scaled group-level contribu-
tions to the public good across T rounds reach a threshold level, Z*: Zthl Z(t) § Z*. The
threshold is set such that Zzll B(t)zi(t) < Z* < Y., E;, meaning that the threshold can-
not be reached by an individual’s contributions alone, however it is less than the total initial

endowments of all players in a group.?® There are two cases:

ZNote that setting B(t) = 1 Vt € [1,T] results in no temporal dynamics, and simplifies to the
setup of Marx and Matthews (2000), Milinski et al. (2008), and the Linear treatment.
Z3This implies that n > max;{3(t)}.

24



Case 1: thzl Z(t) > 7z~

In this scenario, the set of individuals N’s weighted cumulative contributions across rounds
[1,T] to the Climate Pot are equal to or exceed the threshold level, and thus disastrous climate
change is averted. All individuals i € N keep their savings, F; — S/, z(t). Individual 7's

monetary payoff is:

T
T, = Ei — Zzi(t)
t=1

Case 2: thzl Z(t) < Z*

In this scenario, the set of individuals N’s cumulative contributions across rounds [1,7] to
the Climate Pot will fall short of the threshold level. Thus disastrous climate change is not
averted. There is a probability p that individual i € N keeps their savings, F; — Zle zi(t),
and probability (1 — p) that they lose their savings and end up with 0.>* Individual 7's

monetary payoff is:

E; — Ztil zi(t) with probability p
0 with probability (1 — p)

T, =

Hence, E[m;| Zzll Z(t) < Z*|=p-|E; — Zle zi(t)]. Figure 4 depicts individual ¢’s payoffs
as a function of the aggregate weighted group contributions Zle Z(t), and b; reflects the
benefit jump from marginally reaching the public good’s threshold.

A.3.1 Representation of the Lab Experiment

Across all treatments, there are five individuals per group, so n =5 and N = {1,...,5}. Each
individual is endowed with E; = 36, and can contribute a maximum of 4 to the Climate Pot
per round. The CPG runs for a total of 7' = 9 rounds. The threshold level Z* is 90, and
the probability with which an individual keeps their savings if the threshold is not met, is
p = 30%.

Linear vs. Step CPG

In the Linear set-up of the game, contributions to the Climate Pot are neither amplified nor

reduced across the nine rounds, hence 5(t) = 1 for t = {1,...,9}. On the contrary, in the

24This probability is individual-specific, and thus if a group fails to reach the threshold, some group
members can get a positive payoff while others may not. This differs from Milinski et al. (2008)
where the probability is group-specific. The probability being individual-specific captures the idea
that disastrous climate change may have varying levels of impact on different countries.
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Figure 4. Individual Payoff Function

(more) realistic set-up, the f; is a Step function that varies according to the round of the
game. Thus the returns to contributions decay, as 3(t) = 1.5 for t = {1,2,3}, 5(t) = 1.0 for
t ={4,5,6}, and p(t) = 0.5 for t = {7,8,9}.

Nash Equilibria

The Climate Protection Game, both in its Linear and Step version, presents two, Pareto-
ranked symmetric pure strategy Nash Equilibria (NE) for risk-neutral players.”> Either all
players contribute 0 per round to the Climate Pot, or they contribute 2 per round. The first
Nash Equilibrium, in which all players decide not to contribute, results in expected earnings
of 0.30 - 36 + 0.70 - 0 = 10.80. This equilibrium exists due to the No Deviation Constraint,
meaning that players cannot unilaterally reach the threshold (Croson and Marks, 2000). The
second, Pareto dominant, symmetric pure strategy NE ensures that players contribute 2 per
round, thus coordinating such that the 90 threshold level is met in the final round, and all
players receive earnings of 18.

Both the Linear and Step CPG have numerous asymmetric NE where individuals con-
tribute varying amounts (across rounds) to the Climate Pot, depending on the likelihood of
meeting the threshold, thus ensuring that past investments were not in vain. Each path of
contributions where the threshold of 90 is exactly met, and no individual contributes more
than 25.2 constitutes a NE as players do not have a profitable deviation (Abou Chakra and
Traulsen, 2012).26

25Symmetric means across players and rounds. Hence, all players make the same contribution to
the Climate Pot in every round of the game.
2695.2 = 36 - 0.7, the expected losses from contributing zero to the public good and the threshold
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The Step CPG offers many additional NE, with the most efficient one consisting of each
player contributing 4 in rounds ¢t = {1, 2,3} and contributing 0 in the remaining rounds, thus
reaching the threshold with 24 left in savings and hence earnings. On the flip side, strategies
that emerge as dominant strategies in Evolutionary Game Theory simulations of the Linear
CPG by Hilbe et al. (2013) do not get passed along in the Step CPG - for example a strategy
where players contribute 0 in each round of the first half of the CPG, and the maximum
amount (4) in the remaining rounds. This strategy acts as a self-commitment, as well as
a credible signal to the other players that one won’t contribute more than the “fair share”
(Hilbe et al., 2013). However due to f; < 1 in the later rounds of the Step CPG, groups
consisting of individuals deploying this strategy fall short of the threshold.

B Evolutionary Game Theory Simluations

The EGT simulations build on the simulations by Abou Chakra and Traulsen (2012).%
Similar to Abou Chakra and Traulsen (2012), each individual has a strategy per round ¢ that
consists of (i) a threshold 7;, (ii) a contribution j; made if the aggregate group contributions
exceed the threshold 7;, and (iii) a contribution k; made if the aggregate group contributions
do not exceed the threshold 7;. At the start of the simulation, every player is assigned a
random strategy (in terms of {7, j;, k;}) for each of the nine rounds of the CPG.

In each generation, 1000 games are played. For each game, five random players are drawn
to participate. Per generation, each player’s payoff is the sum of total payoffs per game they
participated in (based on the payoff rules described in Section 3), divided by the number of
games they participated in. At the end of each generation, a player’s payoff is translated
into their fitness value: f; = exp(0 - m;), where 7; is the player’s payoff, and ¢ is the selection
intensity.

In the transition from one generation to the next, the next generation’s strategies are
selected based on a Wright-Fisher process, where an individual’s fitness in the previous gen-
eration determines the probability that their strategy is passed on to the next generation.
Strategies with a higher fitness are more likely to be passed on. Errors are incorporated into
this process: with a probability u, Gaussian noise with standard deviation o are added to
T;, Ji, k; of each round, independently. Averages are computed from 100,000 generations from

150 iterations per treatment arm.

not being met, which applies to both Linear and Step settings. This is required to satisfy the Indi-
vidual Rationality condition, ensuring that no individual contributes more than their own valuation
of meeting the threshold.

2"The code is written in Python, rather than C++, as is the case with Abou Chakra and Traulsen
(2012).
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The specifications of the EGT simulation are as follows:

Variable Value

) 1.0
1 0.03
o 0.15

Table 1: Values of EGT Simulation Parameters

Table 2: Overview of Results from EGT Simulations

Linear EGT Step EGT p-value

Contributions Rounds 1-3 46.63 49.81 0.0013
(0.71) (0.68)

Contributions Rounds 4-6 32.98 19.19 0.0000
(0.91) (1.01)

Contributions Rounds 7-9 17.64 4.78 0.0000
(0.84) (0.54)

Total Unweighted Contributions 97.25 73.78 0.0000
(0.48) (0.62)

Total Weighted Contributions 97.25 96.29 0.2052
(0.48) (0.58)

Prob. Reaching Threshold 0.95 0.96 0.1612
(0.48) (0.58)

Hypothetical Payoffs 16.04 20.39 0.0000
(0.03) (0.09)

Notes: p-values are based on a two-sided t-test with n; = 150 and ny = 150.

Standard errors are reported in parentheses.

Figure 3 illustrates that the Linear contributions in the EGT simulation differ from the
Linear contributions observed in the lab experiment. Nevertheless, the Linear contributions
in the EGT simulation follow a similar pattern to the Step contributions (both in the lab and
EGT simulations). Comparing the two EGT treatments, contributions to the public good are
statistically significantly lower in the Linear treatment in the first three rounds, as reported
in Table 2. In rounds 4-6 and 7-9, contributions in the Linear treatment are substantially
higher, resulting in greater total unweighted contributions to the public good. This in turn
leads to significantly lower (hypothetical) expected payoffs for the Linear arm, whose average
payoff is 16.04 + 0.03, compared with 20.39 + 0.09 for the Step arm. Nevertheless, the findings

of the EGT simulations closely mirror those of the lab experiment.

C Regressions - Clustered SE at Group Level
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Table 3: Past Individual Contributions on Free-riding

Free-riding

(1) (2) (3)
OLS Probit Logit

Player Past Cum. Contrs  -0.0092%  -0.0294%  -0.0589*
(0.0040)  (0.0136)  (0.0251)
N 2235 2235 2235

Notes: Columns (1), (2), and (3) show the results of a regression of
Player’s individual cumulative past contributions, on their likelihood to
free-ride in the current round. Control variables include Other Group
Members’ cumulative past contributions, the treatment status, a dummy
for the year of the experiment, the 5(t) scaling factor, the player’s age
and gender, their risk and loss aversion, and their experiment compre-
hension score. Standard errors (reported in parentheses) are clustered at
the group level. Column (1) reports results from an OLS regression, (2) a
probit regression, and (3) a logit regression. I exclude observations from
the first round, and observations where the group’s aggregate contribu-
tion already reached or exceeded 90 in the previous round. *** ** and
* represent significant differences at the 1, 5 and 10% level, respectively.

Table 4: Past Group Contributions on Free-riding

Free-riding

(1) (2) (3)
OLS Probit Logit

Group Past Cum. Contrs 0.0008 0.0047 0.0082
(0.0006)  (0.0027)  (0.0047)
N 2235 2235 2235

Notes: Columns (1), (2), and (3) show the results of a regression of
a player’s Group cumulative past contributions, on their likelihood to
free-ride in the current round. Control variables include the treatment
status, a dummy for the year of the experiment, the 8(t) scaling factor,
the player’s age and gender, their risk and loss aversion, and their exper-
iment comprehension score. Standard errors (reported in parentheses)
are clustered at the group level. Column (1) reports results from an OLS
regression, (2) a probit regression, and (3) a logit regression. I exclude
observations from the first round, and observations where the group’s
aggregate contribution already reached or exceeded 90 in the previous
round. *F* ** and * represent significant differences at the 1, 5 and
10% level, respectively.
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Table 5: Game Round on Contributions and Free-Riding

Below Nash Equilibrium Contribution Free-riding
(1) 2) (3) (4) () (6)
OLS Probit Logit OLS Probit Logit

Game Round ~ 0.0577%%%  0.1627%%%  0.2698%%%0 | 0.0665***  0.2210%%%  0.4154%%*
(0.0158)  (0.0452) (0.0794) (0.0156)  (0.0565)  (0.1120)
N 2535 2535 2535 2535 2535 2535

Notes: Columns (1), (2), and (3) show the results of a regression of the game’s round, on a player’s likelihood

to contribute less than 2 (a symmetric pure Nash Equilibrium) in the current round. Columns (4), (5), and (6)
show the results of a regression of the game’s round, on a player’s likelihood to free-ride in the current round.
Control variables include the Group Past Cumulative Contributions, treatment status, a dummy for the year
of the experiment, the 3(t) scaling factor, the player’s age and gender, their risk and loss aversion, and their
experiment comprehension score. Standard errors (reported in parentheses) are clustered at the group level.
Columns (1) and (4) reports results from an OLS regression, (2) and (5) a probit regression, and (3) and (6) a
logit regression. The number of observations is larger than in previous tables, as observations are included from
the first round. *** ** and * represent significant differences at the 1, 5 and 10% level, respectively.
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D Regressions - Clustered SE at Individual Level

Table 6: Past Individual Contributions on Free-riding

Free-riding

(1) (2) (3)
OLS Probit Logit

Player Past Cum. Contrs  -0.00917 -0.0294 -0.0589
(0.00486)  (0.0163)  (0.0302)
N 2235 2235 2235

Notes: Columns (1), (2), and (3) show the results of a regression of
Player’s individual cumulative past contributions, on their likelihood to
free-ride in the current round. Control variables include Other Group
Members’ cumulative past contributions, the treatment status, a dummy
for the year of the experiment, the §(¢) scaling factor, the player’s age
and gender, their risk and loss aversion, their experiment comprehension
score, and we include group-level fixed effects. Standard errors (reported
in parentheses) are clustered at the individual level. Column (1) reports
results from an OLS regression, (2) a probit regression, and (3) a logit
regression. I exclude observations from the first round, and observations
where the group’s aggregate contribution already reached or exceeded 90
in the previous round. *** ** and * represent significant differences at
the 1, 5 and 10% level, respectively.
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Table 7: Past Group Contributions on Free-riding

Free-riding

(1) (2) (3)
OLS Probit Logit

Group Past Cum. Contrs 0.0008 0.0047 0.0082
(0.0009)  (0.0044)  (0.0078)
N 2235 2235 2235

Notes: Columns (1), (2), and (3) show the results of a regression of
a player’s Group cumulative past contributions, on their likelihood to
free-ride in the current round. Control variables include the treatment
status, a dummy for the year of the experiment, the [(t) scaling fac-
tor, the player’s age and gender, their risk and loss aversion, their ex-
periment comprehension score, and we include group-level fixed effects.
Standard errors (reported in parentheses) are clustered at the individual
level. Column (1) reports results from an OLS regression, (2) a probit
regression, and (3) a logit regression. I exclude observations from the
first round, and observations where the group’s aggregate contribution
already reached or exceeded 90 in the previous round. *** ** and *
represent significant differences at the 1, 5 and 10% level, respectively.

Table 8: Game Round on Contributions and Free-Riding

Below Nash Equilibrium Contribution Free-riding
1) ) 3) (1) (5) (6)
OLS Probit Logit OLS Probit Logit
Game Round  0.0577 0.1627* 0.2698 0.0665*  0.2210%  0.4154*
(0.0289)  (0.0804) (0.1418) (0.0288)  (0.0969)  (0.1935)
N 2535 2535 2535 2535 2535 2535

Notes: Columns (1), (2), and (3) show the results of a regression of the game’s round, on a player’s
likelihood to contribute less than 2 (a symmetric pure Nash Equilibrium) in the current round. Columns
(4), (5), and (6) show the results of a regression of the game’s round, on a player’s likelihood to free-ride in
the current round. Control variables include the Group Past Cumulative Contributions, treatment status,
a dummy for the year of the experiment, the 3(t) scaling factor, the player’s age and gender, their risk
and loss aversion, their experiment comprehension score, and we include group-level fixed effects. Standard
errors (reported in parentheses) are clustered at the individual level. Columns (1) and (4) reports results
from an OLS regression, (2) and (5) a probit regression, and (3) and (6) a logit regression. The number
of observations is larger than in previous tables, as observations are included from the first round. ***, **
and * represent significant differences at the 1, 5 and 10% level, respectively.
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