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Abstract

Winsorizing and trimming are used to minimize the effects of outliers on es-
timated treatment effects. The typical approach winsorizes/trims the tails of
the whole sample, even if there are heterogeneous subgroups within the sam-
ple — like a treatment and control group in Randomized Controlled Trials.
An alternative approach — Stratified Winsorizing/Trimming — winsorizes sub-
groups separately, ensuring that an equal proportion of observations are win-
sorized /trimmed per subgroup. Monte Carlo simulations of an RCT illustrate
that Stratified Winsorizing/Trimming reduces the treatment effect bias and
risk of Type II errors compared to the traditional approach, although at the
cost of a greater likelihood of Type I errors. Applications to Angelucci et al.
(2023) and Jack et al. (2023) illustrate that the chosen winsorizing/trimming
technique can affect the magnitude and statistical significance of treatment
effects. Practical guidelines for researchers wanting to winsorize/trim a sam-

ple that consists of heterogeneous subgroups are discussed.
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1 Introduction

Researchers are concerned with the role of measurement errors and outliers in the
estimation of variables and treatment effects. For example, Gollin and Udry (2021)
find that measurement errors and productivity shocks explain between half and
two-thirds of the variance in productivity among farmers in Uganda and Tanzania.
While one literature strand focuses on designing surveys to minimize the occurrence
of measurement errors, another strand focuses on dealing with measurement errors
— in particular, outliers — once the data is collected.! The most common approach
to mitigating the role of outliers is to winsorize or trim the tails of the sample dis-
tribution. Winsorizing entails “replacing any values bigger than a certain percentile
with the value of the data point at that percentile itself”, while trimming consists
of “replacing the outliers with a missing value” (World Bank, 2023).?

Most researchers winsorize/trim the whole sample, but some recent papers —
including Benson et al. (2023), Muralidharan et al. (2023), and Bedoya et al. (2023)
— winsorize/trim subgroups separately, for example by winsorizing/trimming treat-
ment and control groups of a Randomized Controlled Trial (RCT) individually. This
paper explores the advantages and disadvantages of winsorizing/trimming the whole
sample versus separate subgroups (called Stratified Winsorizing/ Trimming). After
outlining the two techniques in Section 2, Monte Carlo simulations of an RCT in
Section 3 illustrate the effects of both winsorizing/trimming techniques on a study’s
estimated treatment effect bias and the likelihood of Type I and II errors.® The
simulations reveal that compared to the standard approach of winsorizing/trim-
ming the whole sample, Stratified Winsorizing/Trimming increases the likelihood of
Type I errors, while reducing both the bias on the treatment effect estimate and
the likelihood of Type II errors. The two approaches to winsorizing/trimming are
subsequently applied to Angelucci et al. (2023) and Jack et al. (2023) in Section 4 to
illustrate that the chosen winsorizing/trimming method can impact both the mag-

nitude and statistical significance of estimated treatment effects in RCTs as well as

'For example, the Journal of Development Economics released a Special Issue on Measurement
and Survey Design.

20Other terminology used includes truncating (both for winsorizing and trimming), and replacing
data with empty observations (for trimming).

3The focus of the simulations is on winsorizing, as this is more commonly applied in the academic
literature. However, the same intuition and results hold for trimming, see Appendix A.



Difference-in-Difference designs. Section 5 discusses practical guidelines associated
with winsorizing/trimming the whole sample versus separate subgroups, including
Stata and R code, before Section 6 concludes.*

By focusing on the most common method of dealing with outliers, this paper
contributes to the literature on the importance of outliers and measurement errors in
the estimation of variables and their relationships. While quantile treatment effects
are often used to highlight the heterogeneity of treatment effects across a sample dis-
tribution, trimming and winsorizing are used to reduce the effects of outliers. For ex-
ample, Angrist and Krueger (2000) apply trimming to matched employer-employee
data and conclude that “a small amount of trimming could be beneficial” to reduce
the effect of outliers. Bollinger and Chandra (2005) illustrate that winsorizing and
trimming can result in biased regression estimates, by inducing a sample selection
bias: the remaining sample post-winsorizing/trimming is no longer representative
of the underlying population (Heckman, 1979; Goldberger, 1981; Heckman, 1990).
This paper contributes to this literature by identifying an additional potential bias
with the traditional approach to winsorizing/trimming the whole sample as a result
of the unequal winsorizing/trimming of subgroups of the sample, and illustrates the
advantages and disadvantages of both winsorizing/trimming techniques on biased
estimates of treatment effects, and the likelihood of Type I and II errors.

More recently, Broderick et al. (2023) and Young (2019) have placed renewed
emphasis on how outliers and high leverage observations can affect average treat-
ment effects. Broderick et al. (2023) show that dropping less than 1% of observations
can change the magnitude and sign of estimated treatment effects of published eco-
nomics papers. Young (2019) illustrates that, across 53 papers published in AEA
journals, removing just a single observation results in 35% of treatment effects that
were statistically significant at the 1% level to no longer be as statistically signifi-
cant. This paper contributes to the literature on the sensitivity of treatment effect
estimates to outliers by illustrating how the winsorized/trimmed outliers can affect
the treatment effect estimate, with empirical applications to Angelucci et al. (2023)
and Jack et al. (2023). Across both papers, treatment effect estimates change by

53.84% on average as a result of Stratified Winsorizing/Trimming instead of the

4The Online Appendix reproduces Monte Carlo simulations for trimming, a theoretical frame-
work, and applications of both winsorizing techniques to Schilbach (2019) and Augsburg et al.
(2015).



traditional approach of winsorizing/trimming the whole sample. Reporting treat-

ment effects as a result of both winsorizing/trimming techniques can complement

the “Approximate Maximum Influence Perturbation” of Broderick et al. (2023) to

strengthen the robustness of treatment effect estimates.

Based on the Monte Carlo simulations and applications to Angelucci et al. (2023)

and Jack et al. (2023), this paper offers six practical guidelines for researchers who

want to winsorize/trim outliers, further outlined in Section 5:

1.

Irrespective of the empirical strategy, panel data collected during different time
periods/survey rounds should be treated as separate subgroups, and hence

winsorized /trimmed separately.

With Randomized Controlled Trials, there is no clear winner between win-
sorizing/trimming the entire sample vs. stratifying per subgroup. Instead,
reporting both techniques provides a more robust estimation of the treatment
effect.

For Difference-in-Difference and Regression Discontinuity Designs, the rec-
ommendation is to use Stratified Winsorizing/Trimming as the study sample

consists of different subgroups.

Reporting the proportion of winsorized/trimmed observations per subgroup
in a paper’s appendix can alleviate concerns that observations in certain sub-

groups are disproportionately winsorized /trimmed.

For Pre-Analysis Plans of RCTs, the recommendation is to pre-specify that
both approaches to winsorizing/trimming will be used as a pre-specified per-
centile cut-off, in order to provide further robustness that treatment effect

estimates are not driven by outliers.

Subgroups should be categorized by time periods (in the case of panel data),
and “treatment” groups. The only exception is the baseline of an RCT, where
it is known that the treatment and control groups are drawn from the same

underlying distribution.



2 Winsorizing and Trimming: The Basics

Outliers, particularly in self-reported data, can arise for a variety of reasons: enu-
merator fatigue, human error, or misreporting, to name a few. Regardless of their
reason, outliers can result in the sample distribution differing from the true, un-
observed population distribution. Similarly, outliers — in particular high leverage
observations (Broderick et al., 2023) — can bias treatment effect estimates. There-
fore, authors frequently winsorize/trim outliers (the shaded region in Figure 1) such
that the observed sample distribution more closely reflects the true, unobserved

population distribution.
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Figure 1. Winsorizing/Trimming the Whole Sample

The most common approach to winsorizing/trimming is to define an upper
and/or lower percentile bound beyond which observations are considered outliers
and hence winsorized/trimmed. However, some studies use different criteria for
winsorizing/trimming their data, informed by the underlying data generating pro-
cess. For example, Allcott et al. (2020) winsorize individual’s willingness-to-accept
to abstain from Facebook at $170, as that was the upper bound of the distribution of
Becker—-DeGroot—Marschak offers made. de Mel et al. (2019) trim a firm’s number
of workers at 5, in order to be powered to detect small changes in the outcome vari-
able, due to a long right tail. Fafchamps et al. (2012) trim observations above 10,000
Ghanaian cedi, arguing these are likely due to currency errors. For situations like
these, a clear rationale exists to winsorize/trim at a certain value. However, often
outcome variables are winsorized /trimmed at the 95th or 99th percentile to account

for right-tailed outliers, without an understanding of the data generating process



and cause of the outliers. Particularly with the emergence of Pre-Analysis Plans,
researchers pre-specify how they will deal with outliers, without understanding the
underlying nature of these outliers, and hence rely on rules of thumb.?

The traditional approach to winsorizing and trimming treats the sample as one
distribution, even when the sample consists of subgroups, such as a control and treat-
ment group in an RCT.® If the measurement error is uncorrelated with the subgroup
(e.g., the result of an enumerator error, or white noise) — as is typically the case —
when authors winsorize/trim, the expectation is that the likelihood of outliers and
measurement errors is the same across subgroups within the sample. However, if the
subgroups have different distributions — for example due to a non-zero treatment ef-
fect — winsorizing or trimming the whole sample can disproportionately winsor/trim
the tails of the distribution of each subgroup. Figure 2a illustrates this in the case
of an RCT where the treatment group experiences a positive treatment effect, where
the traditional approach to winsorizing/trimming trims the bottom-tail of the con-
trol group distribution, and the upper-tail of the treatment group distribution.” If
the measurement error is uncorrelated with the subgroup (e.g., the result of an enu-
merator error, or white noise) — as is typically the case — the differential trimming of
outliers in the treatment and control distributions can generate a biased treatment

effect, as illustrated by Figure 2b.

Observed Distribution
with Measurement Error

flx)

Winsors/ Trims Winsors/Trims e Hr
only Control only Treat

T v

(a) Treatment vs. Control (b) Treatment Effect Bias

Figure 2. Winsorizing/Trimming: by subgroup

5As of February 21th, 2025, 32% of the Pre-Analysis Plans Accepted during a Stage 1 Review
at the Journal of Development Economics specified that they intend to winsorize or trim the data.

60Other examples include those above vs. below the cutoff in a RDD design, those receiving an
intervention vs. not in a DiD design, data points collected at different time intervals, heterogeneity
by gender /race, etc.

7 Alternatively, Figure 2a can also illustrate the case of Wave I vs. Wave II of a survey. Simi-
larly, Figure 2a could also represent underlying differences between two groups in a Difference-in-
Differences empirical strategy that nevertheless satisfy the parallel trends assumption.



In the stylistic example of Figure 2a, winsorizing/trimming the left and right
tail of the sample distribution results in winsorizing/trimming the left tail of the
control group distribution, and the right tail of the treatment group distribution.
The implications of the differential winsorizing/trimming of subgroups is illustrated
in Figure 2b, which shows that the means of both subgroups move inwards. This
can result in a biased underestimation of the true treatment effect.

An alternative winsorizing/trimming technique — Stratified Winsorizing/Trim-
ming — instead winsorizes/trims each subgroup separately, as illustrated in Figure 3.
By ensuring that an equal proportion of observations are winsorized/trimmed from
each subgroup (and an equal proportion of left- and right-tailed observations per
subgroup), the distribution of each subgroup more closely reflects the underlying
population distribution of these subgroups (see Figure 3).

The next section illustrates, using Monte Carlo simulations, the effects of win-
sorizing the whole sample vs. subgroups separately on treatment effect estimate

biases, a study’s statistical power (Type II errors), and Type I errors.
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Figure 3. Stratified Winsorizing/Trimming

3 Monte Carlo Simulations

Monte Carlo simulations replicate an RCT where 500 participants are randomly

assigned to a control and a treatment group.® The estimated regression is Y; =

8Monte Carlo simulations simulate a RCT, as this is the most common empirical method where
winsorizing/trimming is used. Furthermore, the major limitation of Stratified Winsorizing/Trim-
ming — the increased likelihood of Type I errors when the stratified groups are actually from the
same underlying distribution — does not apply to other empirical strategies such as DiD or RDD.



a + 01T; + €;, where T; is an indicator equal to one if the participant is assigned
to the treatment group, and zero otherwise. 3; therefore is an unbiased estimate of
the treatment effect. The error term is standard normally distributed (~ N(0,1)),
while the outcome variable Y; is winsorized at the 90% level (top and bottom 5%),
using the traditional approach of winsorizing the whole sample, as well as Stratified
Winsorizing separately by treatment group.” Due to the nature of the simulations,

outliers are uncorrelated with assignment to the treatment or control group.

3.1 Biased Treatment Effects

The stylistic example of Figure 3 illustrates how winsorizing the entire sample distri-
bution can differentially trim subgroups if their underlying distributions differ. This
in turn can bias the treatment effect estimate by under-reporting the true treat-
ment effect. To test this, I run 10,000 simulations of the RCT with 500 subjects di-
vided across a treatment and control group. Each simulation generates a treatment
effect estimate (f;) without winsorizing, and the two approaches to winsorizing.
The resulting bias is measured as the difference in treatment effects (between the
non-winsorized sample, and the winsorized sample, done separately for the two ap-
proaches to winsorizing), normalized by the standard deviation of the control group
of the non-winsorized sample. The horizontal white line means there is no treat-
ment effect bias as a result of winsorizing. Values above the white horizontal line
indicate that winsorizing induces a positive bias on the treatment effect estimate,
while values below the horizontal line indicate a negative bias. Results are presented
in Figure 4.

Figure 4a shows that Stratified Winsorizing on average results in a smaller treat-
ment bias compared with the traditional approach to winsorizing for small and
moderate treatment effects, ranging from Cohen’s d = [—0.5,0.5] (Cohen, 1988).
Figure 4b reproduces Figure 4a for larger treatment effects in the range of Cohen’s
d = [-2,2]. While differences between the two approaches to winsorizing are not
statistically significantly different (paired t-test), Stratified Winsorizing generates a

smaller mean bias, smaller spread, and the bias does not increase or flip sign with

9The focus for this section is on winsorizing, however Appendix A reproduces simulations for
trimming, with qualitatively similar results. The Appendix also reproduces the simulations for
other distributions aside from a normal distribution for both winsorizing and trimming, with
unchanged results.



the treatment effect (K-S test, p < 0.001). In cases of a positive treatment effect, the
traditional approach to winsorizing can underestimate the treatment effect. When
the treatment effect is negative, the traditional approach on average underestimates
the true negative treatment effect by generating a positive bias on the treatment

effect estimate.
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Figure 4. Varying Normalized Treatment Effect

Figure 4c shows the effects of 10,000 random draws of the mean and standard
deviation of the treatment and control distributions, with a range (0,4). Stratified
Winsorizing outperforms the traditional approach to winsorizing, with a statistically
insignificant smaller mean bias (paired t-test, p=0.492), but a statistically signifi-
cantly smaller spread (K-S test, p<0.001). Figure 4d fixes the treatment effect to
Cohen’s d = 0.5, but varies the share of the sample belonging to the treatment
group from 5% to 95%. Compared with the traditional approach to winsorizing,
the bias arising from Stratified Winsorizing is consistent across the range of sample
allocations, and smaller in magnitude. This difference in bias is highly statistically
significant (paired t-test and K-S test, p < 0.001).



3.1.1 What is Driving These Results?

To understand the reduced treatment effect bias from Stratified Winsorizing com-
pared with the traditional approach of winsorizing the whole sample, emphasis is
placed on the observations that are winsorized, and the share of winsorized ob-
servations that are from the treatment and control group. Stratified Winsorizing
ensures that a proportional share of observations are winsorized from the control
and treatment groups. The simulations ensure that outliers are uncorrelated with
treatment status, and thus the likelihood of an observation being winsorized should
be uncorrelated with treatment status too. As treatment and control groups are
equally sized in the simulations, proportional winsorizing would result in 50% of the
winsorized observations being from the treatment group.

Figure 5Ha plots a histogram of the share of winsorized observations that are from
the treatment group when using the traditional approach of winsorizing the whole
sample. In some simulations, 100% of winsorized observations are from the treat-
ment group, while in other simulations, 0% of winsorized observations are from the
treatment group. In only 10.16% of the 10,000 simulations underlying Figure 4c does
the traditional approach to winsorizing result in equal proportions of observations
from the control and treatment group being winsorized.

Figures 5b and 5c¢ plot the fraction of left- and right-tailed observations that are
winsorized from the treatment group using the traditional approach to winsorizing
and Stratified Winsorizing, as a function of the treatment effect size.'’ Stratified
Winsorizing ensures that control and treatment groups are winsorized proportion-
ately, irrespective of the size of the treatment effect. This results in 50% of win-
sorized observations being from the treatment group. The traditional approach to
winsorizing, on the other hand, winsorizes control and treatment groups dispropor-
tionately. When treatment effects are negative, a larger share of left-tailed observa-
tions are winsorized from the treatment group, while a smaller share of right-tailed
observations are winsorized from the treatment group, compared with the control
group. When treatment effects are positive, the effect is reversed, and dispropor-
tionately more right-tailed observations are winsorized from the treatment group.

The intuition for these results can be traced back to Figure 2: the larger the

treatment effect, the more right-tailed observations of the treatment group are win-

10The data is based on the 10,000 simulations underlying Figure 4b.
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sorized when using the traditional approach to winsorizing, and the fewer left-tailed
observations of the treatment group are winsorized. The line of best fit of the frac-
tion of winsorized right-tailed observations from the treatment group has a slope
of 0.42, implying that a 0.1 standard deviation increase in the treatment effect
size results in the percentage of winsorized observations from the treatment group

increasing by 4.2%.
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Figure 5. Monte Carlo Simulations: Winsorized Observations

Ensuring that a proportional share of observations are winsorized from the con-
trol and treatment groups also means that Stratified Winsorizing reduces the aver-
age distance of the winsorized variable from the nearest non-winsorized variable.!'!
This can be explained by comparing Figures 3 and 4, which illustrate how the two

approaches to winsorizing differ. Stratified Winsorizing ensures that only values

"For example, a distribution is winsorized at the 5th and 95th percentile. If an observation at
the 99th percentile had an initial value of 10 (which would get winsorized), and an un-winsorized
observation at the 95th percentile had a value of 5, the distance in absolute value would be
|10 — 5| = 5.

11



greater than the 95th percentile of each subgroup’s distribution are winsorized.'?
The traditional approach to winsorizing instead can result in values smaller than
the 95th percentile of a subgroup’s distribution getting winsorized, which increases
the distance between the value of the winsorized and non-winsorized observations.'
In the simulations underlying Figure 4c, Stratified Winsorizing reduced the aver-
age distance of a winsorized from a non-winsorized observation by 8.03%, compared
with the traditional approach to winsorizing. This difference in distance between
the two winsorizing techniques is highly statistically significantly (p<0.001, paired

t-test and K-S test, see Appendix A.1.4).

3.2 Type II Errors and Statistical Power

The effects of both approaches to winsorizing can affect the likelihood of Type
IT errors, and thus a study’s statistical power. To identify this, 1000 iterations
are run, each consisting of 1000 simulations of an RCT with 500 observations. In
each iteration, the sample size is 500 subjects, equally divided across treatment
and control groups. Two-sided t-tests of independent observations are performed,
with a significance level of @ = 0.05. The control group is characterized by a
standard normal distribution, while the treatment group is a normal distribution
with a standard deviation of 1, but a non-zero mean. Additionally, the outcome
variable includes a standard normal error term. The resulting distributions are
winsorized at the 90% level (top and bottom 5%), using both winsorizing techniques.

For each iteration, statistical power is calculated as the percentage of simulations
in which the treatment effect is statistically significant. This is performed separately
for the whole sample, and the winsorized sample using the traditional approach, and
Stratified Winsorizing. Figure 6 reports the percentage improvements in the study’s
statistical power as a result of the two approaches to winsorizing, compared with no
winsorizing.

For Figure 6a, the treatment effect is a uniformly drawn value between d =
[0,0.5]. In Figure 6b, the treatment effect is Cohen’s d=0.2, while the variance of

12The focus here is on the right tail, however the intuition is identical for the left tail (5th
percentile).

13For example, if Figure 1 simulates winsorizing the sample at the 5th and 95th percentile, then
Figure 2 showcases that the traditional approach to winsorizing would winsorize the 10th percentile
and below of the Control group, and the 90th percentile and above of the treatment group. The
assumption here is that control and treatment have an equal sample size.

12



the treatment’s normal distribution varies uniformly between 0 and 2. In Figure
6c, the mean equals the variance of the treatment group’s distribution, and is a
value between (0,0.5]. Figure 6d keeps the treatment group’s distribution fixed
(~ N(2,1)), but varies the sample size of the distribution from 100 to 800 (with the
sample being evenly split between treatment and control group).

What is consistent across Figure 6 is that Stratified Winsorizing outperforms
the traditional winsorizing technique, in terms of statistical power and hence the
likelihood of Type II errors, particularly in simulations with a small treatment effect

or small sample size, which typically have lower levels of statistical power.
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Figure 6. Effects of Winsorizing on Statistical Power

3.3 Type I Errors

The null hypothesis of the simulated RCT regression is that g; = 0, hence that
treatment and control groups are from the same underlying distribution. With
a significance level a = 0.05, the expectation is that Type I errors — where the

null hypothesis of no treatment effect is incorrectly rejected — occur in 5% of the

13



cases. A concern with Stratified Winsorizing is that Type I errors can emerge with
a greater likelihood if the researcher assumes that the sample distribution consists
of subgroups, while in fact it does not. In that case, winsorizing per subgroup can
lead to distortions, and increase the likelihood of Type I errors.

Table 1 reports the likelihood with which Type I errors occur. Results are based
on 1000 iterations, each consisting of 1000 simulations of the RCT with 500 obser-
vations. The control and treatment groups are drawn from the same distribution,
and hence the true treatment effect is zero. Two-sided t-tests of independent ob-
servations are performed to estimate treatment effects, with a significance level of
a = 0.05. Therefore, Type I errors are expected in 5% of the cases. Simulations are
conducted for normal, log-normal, skew-normal, and gamma distributions.

As Table 1, Panel A illustrates, Stratified Winsorizing increases the probability
of Type I errors in instances where the sample distribution is not composed of
subgroups. While the frequency of Type I errors is not statistically significantly
different when outliers are not winsorized compared to when the whole sample is
winsorized, Stratified Winsorizing results in statistically significantly more cases of
Type I errors.

Panel B of Table 1 uncovers an interesting dynamic: while the likelihood of Type
I errors is higher when using the Stratified Winsorizing technique, the likelihood of
a Type I error when there is no winsorizing also being a Type I error when win-
sorizing is greater using the Stratified Winsorizing than the traditional approach
of winsorizing the entire sample. The observation that not all of the same Type I
errors are documented when winsorizing vs. not is in line with Bollinger and Chan-
dra (2005), who argue that the remaining sample after winsorizing differs from the
sample without winsorizing. This can affect not only the treatment effect estimates

(and hence Type II errors) but also the likelihood of Type I errors.

4 Applications to Angelucci et al. (2023) and
Jack et al. (2023)

The Monte Carlo simulations demonstrate that both approaches to winsorizing can
affect a study’s estimated treatment effect, and the likelihood of Type I and II

errors. In this Section, I illustrate how the two approaches to winsorizing/trimming

14



Table 1: Winsorizing and Type I Errors

Normal Log-Normal Skew-Normal Gamma

Distr. Distr. Distr. Distr.
A. Frequency of Type I errors
No Winsor 0.050 0.048 0.050 0.050
Traditional Wins. 0.050 0.050 0.050 0.050
Stratified Wins. 0.075 0.108 0.069 0.081
p-value No vs. Trad. 0.28 0.00 0.68 0.90
p-value No vs. Strat. 0.00 0.00 0.00 0.00
p-value Trad vs. Strat. 0.00 0.00 0.00 0.00
B. Percentage of No Winsor Type I errors included
Traditional Wins. 85.24 61.90 88.14 80.98
Stratified Wins. 99.18 92.78 99.25 98.37
p-value Trad vs. Strat. 0.00 0.00 0.00 0.00

can affect the statistical significance of treatment effect estimates, using Angelucci
et al. (2023) and Jack et al. (2023) as examples. Appendix D performs similar
analysis on Schilbach (2019) and Augsburg et al. (2015). These studies were chosen
due to their different types of data (administrative vs. self-reported), monetary
and non-monetary outcomes, different empirical strategies (RCT vs. Difference-in-
Differences), uses of trimming and winsorizing, and the availability of their data
and code. The regression tables first replicate the findings of the respective paper
— using the traditional approach to winsorizing/trimming — in Panel A, followed by
regression estimates using the Stratified Winsorizing/Trimming technique in Panels
B and C. Panel B stratifies by treatment group, while Panel C also stratifies by
the data collection round. Panels D-F illustrate the percentage of observations
winsorized /trimmed for each of the subgroups and survey rounds using the different

winsorizing /trimming techniques.

4.1 Angelucci et al. (2023, JDE)

Angelucci et al. (2023) conducted an RCT among women in the Democratic Re-
public of Congo, randomizing access to a multifaceted program including financial
support, training, and social support. The study measured the intervention’s im-

pact on various outcomes, immediately after the program ended (endline), and one
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year later (follow-up). Data was winsorized at the 5th and 95th percentiles.* Table
2.(i) reports the OLS-estimated treatment effects for Total Monthly Earnings, Earn-
ings Net of Costs, and Total Business Costs.'” Panel A replicates the findings of
Table 4 in Angelucci et al. (2023) by using the traditional winsorization technique,
while Panels B and C present OLS regression results for the Stratified Winsorizing
per Treatment and Stratified Winsorizing per Treatment*TimePeriod approaches,
respectively.

Table 2 reports treatment effects of the intervention for both the endline survey
(after the end of the intervention), and the follow-up (one year later). Compared
with Panel A, Stratified Winsorizing by Treatment, and by Treatment*TimePeriod
(Panels B and C, respectively) result in larger treatment effect estimates, with
greater statistical significance. This suggests that the traditional approach to win-
sorizing has a downward bias on the treatment effect estimates.

Table 2.(ii) illustrates that this downward bias is driven by an over-winsorizing
of right-tailed observations from the treatment group, as it reports the percent-
age of observations winsorized in the treatment and control groups of Angelucci
et al. (2023), as well as the percentage of observations winsorized at endline and
the post-endline follow-up. Panel D demonstrates that the traditional approach
to winsorizing differentially winsorizes control and treatment observations, with a
greater percentage of treated observations being winsorized than observations in the
control group. The discrepancy between the percentage of observations winsorized
in the control and treatment group is reduced as a result of Stratified Winsorizing
by Treatment, as shown in Panel E.

However, Table 2.(ii) also illustrates that the traditional winsorizing approach
and Stratified Winsorizing by Treatment technique differentially winsorize observa-
tions from different survey rounds. Both techniques winsorize endline observations
more than 1-year follow-up observations — although it is unlikely that the measure-
ment error was systematically higher during the endline survey. This is addressed
by Panels C and F, which winsorize the data stratified by Treatment*TimePeriod,

to further ensure that not only are observations from different treatment groups

4 Nevertheless, only right-tailed observations are winsorized. This is because for all three out-
come variables, over 50% of observations equaled 0, the lower bound. Hence no winsorizing took
place at the left tail.

15These outcome variables were chosen, as they were the only ones that were winsorized in the
replication package.
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winsorized proportionately, but also across survey rounds.

Table 2: Angelucci et al. (2023), Table 4

Table 2.(i) OLS Treatment Effect Estimates
Total Monthly Earnings Earnings Net of Costs Total Business Costs
Endline Follow-up Endline  Follow-up  Endline Follow-up

(1) 2) 3) (4) (5) (6)
A. Traditional Winsorizing
Treatment 0.202* 0.467** 0.0714 0.191** 0.180** 0.321*
(0.106) (0.120) (0.0704) (0.0773) (0.0731)  (0.0859)

B. Stratified Winsorizing by Treatment
Treatment 0.365*** 0.585*** 0.146** 0.263*** 0.429**  0.577**
(0.114) (0.118) (0.0727)  (0.0768) (0.0771) (0.103)

C. Stratified Winsorizing by Treatment*TimePeriod
Treatment 0.309*** 0.681*** 0.166** 0.249*** 0.301***  0.635***
(0.112) (0.126) (0.0699)  (0.0776) (0.0672) (0.107)

Table 2.(ii) % of Treat. and Control Obs. Winsorized
Total Monthly Earnings Earnings Net of Costs Total Business Costs

0 2) 3)
D. Traditional Winsorizing
% of Control Obs. Winsorized 2.95 5.45 3.25
% of Treatment Obs. Winsorized 5.72 9.82 5.82
% of Endline Obs. Winsorized 4.75 7.94 4.75
% of Follow-up Obs. Winsorized 3.97 7.40 4.36
E. Stratified Winsorizing by Treatment
% of Control Obs. Winsorized 4.65 7.15 4.45
% of Treatment Obs. Winsorized 4.62 8.66 4.43
% of Endline Obs. Winsorized 4.95 8.04 4.60
% of Follow-up Obs. Winsorized 4.31 7.79 4.26
F. Stratified Winsorizing by Treatment*TimePeriod
% of Control Obs. Winsorized 3.90 7.15 4.30
% of Treatment Obs. Winsorized 4.57 8.71 4.52
% of Endline Obs. Winsorized 4.41 8.19 4.56
% of Follow-up Obs. Winsorized 4.07 7.70 4.26

Notes: Standard errors are in parentheses, and clustered at the level of the treatment group. Stratified Winsorizing by Treatment winsorizes the sample separately for treatment
and control, while Traditional Winsorizing winsorizes the entire sample. Stratified Winsorizing by Treatment*TimePeriod winsorizes the sample separately for treatment and
control observations at endline and follow-up separately. Res re reported without corrections for multiple hypothesis testing. Variables are winsorized at the 5th and 95th
percentiles. Consumption refers to the previous week. Business costs include the discounted use value of large purchases. * p<0.1, ** p<0.05, *** p<0.01

Compared with Panel A, treatment effects reported in Panel C are larger in
magnitude, and statistically more significant. This is driven by the winsorized ob-
servations being evenly distributed across treatments, and survey rounds, as shown
in Table 2.(ii). Panels C and F highlight the importance of not only stratifying
winsorizing by treatment, but also by the survey round - particularly for empirical
strategies where the outcome variable is measuring at different time periods. This
will be discussed more in the application to Jack et al. (2023) and the practical

implications in Section 5.
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4.2 Jack et al. (2023)

Jack et al. (2023) conducted an RCT among Kenyan farmers and offered four dif-
ferent loan offers to purchase a water harvesting tank, with varying degrees of asset
collateralization. To measure the intervention’s impact on milk sales based on ad-
ministrative data, the researchers use a I'T'T difference-in-differences approach, and
trim the data at the 1, 5, and 10% level (only the right tail) to account for outliers.

Table 3.(i), Panel A reproduces Table 6 of Jack et al. (2023) by reporting treat-
ment effects using the traditional approach to trimming, while Panel B reports
treatment effects using the Stratified Trimming by Treatment technique. Panel B
reports larger and more statistically significant treatment effects than Panel A, sug-
gesting that the traditional approach to trimming can have a downward bias on the
treatment effect estimate.

As Table 3.(ii) demonstrates, the traditional approach to trimming results in dif-
ferential trimming of observations in treatment and control groups. In line with the
intervention having a positive treatment effect and the authors only trimming the
right-hand tail, Panel D illustrates that a disproportionately larger share of treat-
ment group observations get trimmed using the traditional approach to trimming.
Panel E shows that this is overcome using the Stratified Trimming by Treatment
technique.

Table 3.(ii) also illustrates that both the traditional approach of trimming the
whole sample and Stratified Trimming by Treatment techniques differentially trim
between baseline and endline observations in Jack et al. (2023). Both techniques
trim endline observations more than baseline observations — despite it being unlikely
that outliers were systematically more common at endline.

Panel C in Table 3.(i) reports the OLS treatment effect estimates when using
Stratified Trimming by Treatment*TimePeriod, ensuring that a proportional share
of baseline and endline observations are trimmed, both for treatment and control
groups. Compared with Panel A, the Treat*Post OLS estimate of the treatment
effects increases by 21%, 10%, and 27% (for 1%, 5%, 10% trimming, respectively).
These changes in magnitude are large, statistically significant, and driven by the
trimmed observations being evenly distributed across treatments, and time periods,

as illustrated in Panel F.
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5 Practical Guidelines

The Monte Carlo simulations and applications to Angelucci et al. (2023) and Jack
et al. (2023) have illustrated that the decision of how to winsorize/trim observations
to reduce the role of outliers is less innocuous than it initially seems and can have
large effects on the treatment effect estimates. The Monte Carlo simulations further
showed that the chosen winsorizing/trimming technique can affect the likelihood
of Type I and II errors. This Section therefore discusses practical guidelines when

considering whether and how to winsorize/trim outliers.

5.1 When to Use Which Technique

The underlying empirical strategy and data generating process should inform the
decision of whether and how to winsorize/trim. Regarding the first decision of
whether to winsorize/trim, if outliers persist across correlated outcome variables, it
is unlikely these outliers are due to repeated measurement errors, and more likely
represent a large treatment effect for a few observations. When treatment effects are
driven by these sorts of outliers that are not due to measurement errors — for example
the large effects of microcredit among the upper tails across seven studies reported
by Meager (2022) — winsorizing these outliers will bias the true treatment effect. In
these cases, complementing average treatment effects with quantile regressions can
highlight the overall effect of the intervention as well as its heterogeneity.

The second decision is how to winsorize/trim. In cases where a value beyond /be-
low a certain value can easily be identified as outliers (e.g., the upper bound of the
WTA measure of Allcott et al. (2020)), authors should consider those observations
outliers and winsorize/trim them accordingly. However, the majority of academic
papers set arbitrary percentile thresholds (e.g., 99th or 95th percentile). In these
cases, the decision on whether to winsorize/trim the whole sample or separately per
subgroup should depend on the empirical strategy deployed.

Irrespective of the empirical strategy, panel data collected during different
time periods/survey rounds should be treated as separate subgroups,
and hence winsorized/trimmed separately. As the examples of Angelucci
et al. (2023) and Jack et al. (2023) illustrate, observations of certain time periods

are more likely to be winsorized/trimmed when winsorizing/trimming is not done
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separately per time period, despite no clear rationale existing for why outliers are
more common in certain time periods. As such, it is important to winsorize/trim
observations from each time period / survey wave separately.

Both winsorizing/trimming techniques have their advantages and disadvantages,
as the Monte Carlo simulations illustrated. While Stratified Winsorizing/ Trimming
can improve a study’s statistical power and reduce the bias of treatment effect esti-
mates, it can increase the likelihood of Type I errors compared with the traditional
approach of winsorizing/trimming the whole sample when the underlying distribu-
tion is drawn from the same sample. With Randomized Controlled Trials,
there is no clear winner. Instead, reporting both techniques can provide
a more robust estimation of the treatment effect, while minimizing the
effects of Type I and II errors. This is because the underlying null hypothesis
of RCTs is that treatment and control groups are drawn from the same distribu-
tion. Reporting treatment effects using both winsorizing/trimming techniques can
strengthen the robustness of the treatment effect by illustrating that outliers are not
driving the treatment effects, in line with the insights of Young (2019) and Broderick
et al. (2023).

When treatment effects differ substantially as a result of the winsorizing/trim-
ming technique used, it is important to understand why. For this, an understanding
of the underlying data generating process is crucial: if differential winsorizing/trim-
ming of subgroups is observed when winsorizing/trimming the whole sample (like
in Panel D of the applications to Angelucci et al. (2023) and Jack et al. (2023)),
a justification is needed. For example, if experimenter demand effects are stronger
among a certain subgroup, it can be justified to disproportionately winsorize/trim
outliers from that subgroup. However, without a clear rationale why subgroups are
disproportionately winsorized/trimmed, Stratified Winsorizing/Trimming is likely
to report treatment effect estimates closer to the true treatment effect by ensuring
that equal proportions of observations are winsorized /trimmed across the subgroups.

In cases where Stratified Winsorizing/ Trimming results in statistically significant
estimates but the traditional approach to winsorizing/trimming does not, authors
need to be careful that the statistically significant treatment effect estimates as a
result of Stratified Winsorizing/Trimming are not due to an increased likelihood
in Type I errors. The Monte Carlo simulations illustrated that Type I errors are

more likely as a result of the Stratified Winsorizing/Trimming technique. In such
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cases, the recommendation is for the authors to report treatment effect estimates
following the traditional approach to winsorizing/trimming, in order to minimize
the risks associated with Type I errors. Only if authors can justify why treatment
effect estimates of Stratified Winsorizing/Trimming are more likely to be reliable
(e.g., differential winsorizing/trimming of subgroups using the traditional approach
to winsorizing/trimming although there is no clear reason why), should they be
reported as main results.

This recommendation differs for other kinds of empirical strategies. Unlike
RCTs, subgroups in DiD and RDD specifications are not randomized from the same
underlying sample. Instead, they are drawn from different samples. As such, differ-
ences between these subgroups are likely to be more pronounced, increasing the like-
lihood that winsorizing/trimming the whole sample will differentially winsorize/trim
observations across subgroups. For example, with Difference-in-Difference designs,
the distributions of “treatment” and “control” can be very different so long as the
parallel trends assumption is satisfied. Similarly, with Regression Discontinuity De-
signs, “treatment” and “control” observations are drawn from different sides of a
threshold cutoff. As such, the major drawback of Stratified Winsorizing/Trimming
— namely the increased likelihood of Type I errors — primarily applies to RCTs.
Therefore, the recommendation is to use the Stratified Winsorizing/Trim-
ming for Difference-in-Difference and Regression Discontinuity Designs,
to minimize the likelihood of differential winsorizing/trimming of treatments and

hence the resulting Type II errors.

5.2 Pre-Analysis Plans

While the data generating process should inform the decision of how to deal with
outliers, the rise of Pre-Analysis Plans means that authors have to announce their
strategy for dealing with outliers before understanding the underlying data gen-
erating process. Of all the Stage I accepted Pre-Analysis Plans at the Journal
of Development Economics that indicated their intention to winsorize/trim their
data, all bar one winsorize/trim their data at either the 95th or 99th percentile.'¢

For future Pre-Analysis Plans of RCTs, a recommendation is to pre-specify that

60nly Angelucci and Bennett (2024) do not winsorize/trim at the 95th or 99th percentile, and
instead winsorize observations outside 1.5 times the inter-quartile range, following the suggestion
of Beyer (1981).
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both approaches to winsorizing/trimming will be used as a pre-specified
percentile cut-off, in order to provide further robustness that treatment effect
estimates are not driven by outliers.

For papers without Pre-Analysis Plans, a documentation of how outliers are
handled, including which winsorizing/trimming threshold and technique are chosen,
in the paper’s appendix will increase the transparency surrounding data cleaning
and analysis. In addition to this documentation, reporting the proportion of
winsorized /trimmed observations per subgroup — like Tables 2.(ii) and
3.(ii) — illustrates whether sub-groups are disproportionately affected.
If both winsorizing/trimming approaches are used, reporting how the proportion
of winsorized/trimmed observations per subgroup differs by winsorizing/trimming

approach can explain differences in observed treatment effects.

5.3 How to Define Subgroups

When stratifying winsorizing/trimming by subgroups, authors need to decide how
to define sub-groups. For RCTs, different treatment arms should be considered
as subgroups, along with different survey waves, as shown in the application to
Angelucci and Bennett (2024).'7 For Difference-in-Differences empirical strategies,
sub-groups should be stratified on survey waves, and treatment groups, as illustrated
by Jack et al. (2023). The same holds for regression discontinuity designs.

A concern arises when too many subgroups are defined: akin to stratified ran-
domization, if authors define too many stratas/subgroups, each subgroup will be
so small that no outliers get winsorized/trimmed. Furthermore, creating subgroups
when there in fact are no subgroups can increase the likelihood of Type I errors,
as the Monte Carlo simulations illustrated. Finally, defining too many subgroups
can complicate the interpretability of treatment effects across regression tables: for
example, if an author of an RCT defines subgroups differently for the main regres-
sion (comparing treatment and control) and gender heterogeneity regressions — by
defining subgroups as Treatment*Gender in the second regression — treatment ef-
fect estimates between the two regressions are harder to compare as the observations

that are winsorized /trimmed differ between the two regressions. Therefore, the rec-

17At baseline, treatment arms should not be winsorized /trimmed separately, because random-
ization should ensure they are from the same underlying distribution.
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ommendation is to define subgroups by time periods (in the case of panel

data), and “treatment” groups.

5.4 Statistical Software

Below, the code for the traditional and stratified approach to winsorizing can be
found for Stata and R. Online Appendix C shows the code for the traditional and

stratified approach to trimming.

5.4.1 Stata

Traditional approach to winsorizing: winsor2 QutcomeVar, cuts(5 95)
Stratified Winsorizing: winsor2 QutcomeVar, cuts(b 95) by(Stratified Variable)

54.2 R

I developed a new R package, called WinsorByGroupR, which can be found on
GitHub. Once the package is installed, the functions are as follows:

Traditional approach to winsorizing: winsor(data, value col = “OutcomeVar”,
bounds = ¢(5, 95))

Stratified winsorizing:  winsorize by group(data, group_col = “Stratified-

Variable”, value_col = “OutcomeVar”, bounds = ¢(5, 95))

6 Conclusion

Winsorizing and trimming are frequently used to reduce the role of outliers in de-
pendent variables, by defining a percentile beyond which observations are considered
outliers and hence winsorized/trimmed. However, this paper illustrates that win-
sorizing and trimming is less innocuous than it seems and can bias a study’s treat-
ment effect estimates. These findings are in line with findings by Broderick et al.
(2023) and Young (2019), who show that a few observations can have large effects on
treatment effect estimates. This paper further shows how the winsorizing/trimming
technique used can affect the likelihood of Type I and Type II errors.

While most papers winsorize/trim the entire sample, recent studies — includ-
ing Benson et al. (2023), Muralidharan et al. (2023), and Bedoya et al. (2023)
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— have winsorized /trimmed separately per subgroup, a technique called Stratified
Winsorizing/ Trimming. Monte Carlo simulations of an RCT illustrate that Strat-
ified Winsorizing/Trimming on average result in a smaller bias of the treatment
effect estimate, compared with the traditional approach of winsorizing/trimming
the whole sample. Furthermore, Stratified Winsorizing/Trimming improved the
study’s statistical power, at the cost of increasing the likelihood fo Type I errors.
Applications to Angelucci et al. (2023) and Jack et al. (2023) illustrate that the
decision of how to winsorize/trim has empirical implications, as treatment effects
and their statistical significance change. As such, authors should carefully consider
how to winsorize/trim outliers, informed by the underlying data generating process.
The focus of the simulations and empirical applications has been on RCTs —
given those are the most common empirical setting in which outliers are win-
sorized /trimmed — however, the insights and implications also translate to other
empirical approaches such as Difference-in-Difference or Regression Discontinuity

Designs.
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Table 3: Jack et al. (2023), Table 6

Table 3.(i) OLS Treatment Effect Estimates
(1) (2) (3)
Milk Sales Milk Sales Milk Sales
1% trim 5% trim  10% trim

A. Traditional Trimming

Treat*Post 12.580* 12.749** 9.790%**
[6.419] [5.106] [4.389]

Treatment -3.568 -5.960 -6.161
[5.804] [4.691] [3.914]

B. Trimming by Treatment

Treat*Post 13.355%*  14.374***F  11.320%**
[6.404] [5.053] [4.339]

Treatment -1.832 -5.172 -4.374
[5.640] [4.653] [3.847]

C. Trimming by Treatment*TimePeriod

Treat*Post 15.219%*  14.061***  12.398%**
[6.415] [5.091] [4.271]

Treatment -3.360 -4.935 -4.890
[5.258] [3.942] [3.070]

Table 3.(ii) % of Treat. and Control Obs. Trimmed

(1) (2) (3)
1% trim 5% trim  10% trim

D. Traditional Trimming

% of Control Obs. Trimmed 0.79 4.63 9.26

% of Treatment Obs. Trimmed 1.06 5.11 10.21

% of Baseline Obs. Trimmed 0.50 2.38 5.14

% of Endline Obs. Trimmed 1.10 5.53 10.98

E. Stratified Trimming by Treatment

% of Control Obs. Trimmed 1.00 4.99 9.96

% of Treatment Obs. Trimmed 1.00 5.00 9.99

% of Baseline Obs. Trimmed 0.52 2.45 5.17

% of Endline Obs. Trimmed 1.10 5.53 10.96

F. Stratified Trimming by Treatment*TimePeriod

% of Control Obs. Trimmed 0.99 4.98 9.99

% of Treatment Obs. Trimmed 0.99 4.99 9.99

% of Baseline Obs. Trimmed 0.99 4.98 9.97

% of Endline Obs. Trimmed 1.00 4.99 9.99
Notes: The Post dummy refers to all months from June 2010 (the median loan offer date) onwards. Milk sales
are reported in liters. A 1% trim means the top percentile of observations have been trimmed; similarly for the

5% and 10% trims. Standard errors clustered at household level are reported in brackets. Results are reported
without corrections for multiple hypothesis testing. * p<0.1, ** p<0.05, *** p<0.01

25



Declaration of generative AI and Al-assisted tech-

nologies in the writing process.

During the preparation of this work the author(s) used ChatGPT Deep Research
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ChatGPT was used for the coding of the Monte Carlo simulations. After using this
tool/service, the author(s) reviewed and edited the content as needed and take(s)

full responsibility for the content of the published article.
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Online Appendix to:
Winsorizing and Trimming with Subgroups
by Till Wicker

A Simulations

A.1 Biased Treatment Effect
A.1.1 Description

10,000 simulations are run of a hypothetical RCT with 500 subjects, that are divided
equally across treatment and control (except for Figure 4d). The outcome variable is
normally distributed and has a normally distributed error term (~ N(0,1)). In Figures
4a and 4b, the normal distributions of the outcome variable of the treatment and control
groups are characterized by a mean that is uniformly, randomly drawn from [0,0.5] ([0,2]
for Figure 4b), with a standard deviation of 1.

The resulting distributions are winsorized at the 90% level (top and bottom 5%), using
the traditional winsorizing approach, as well as the Stratified Winsorizing per Treatment
approach. Outcome variable y (unwinsorized, traditional winsorizing, Stratified Winsoriz-
ing per Treatment) is then regressed on Treatment, with HAC robust standard errors
(yi = B1T; + &;). Hence each simulation generates a treatment effect without winsorizing,
and the two approaches to winsorizing. The resulting bias is measured as the difference in
treatment effects (between the non-winsorized sample, and the winsorized sample, done
separately for the two approaches to winsorizing), normalized by the standard deviation
of the un-winsorized control group.

Figure 4c varies the mean and standard deviation of the treatment and control groups,
with each taking a randomly and independently chosen value between 0 and 4. In Figure
4d, the control group is characterized by a standard normal distribution, while the treat-
ment group is a normal distribution with mean 0.5 and standard deviation 1. Among the
sample of 500 subjects, a random number between [20, 480] is assigned to the treatment
group.'®

For Figure 7a, the standard deviations of the outcome variable of the treatment and
control group are randomly and uniformly chosen values between 0 and 4. The mean of

the treatment group’s distribution is 3, while it is equal to 1 in the Control group (and

18Fach treatment group needed at least 20 subjects such that trimming at the 90% level would
winsorize at least one observation on each tail.
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hence the average treatment effect =2). Because the standard deviation of the control
group varies and can be very close to zero, the biases are not normalized, to avoid very
large values.

For Figure 7b, python’s skewnorm function is used to simulate non-normal and non-
symmetric distributions with skewness values ranging from -4 (left-tailed) to 4 (right-
tailed), while keeping the mean and standard deviation constant. The same simulations
are done with trimming (Figure 9), where the top and bottom 5% of the distribution are
trimmed, rather than winsorized.

For non-normal distributions (Figures 8 and 10), 10,000 simulations were run, where
the mean and standard deviation were a randomly drawn value between (0,4). In the case
of the Poisson distribution, A € (0,4).

A.1.2 Winsorizing, Normal Distribution
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Figure 7. Winsorizing: Normal Distribution
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A.1.3 Winsorizing, Non-Normal Distribution
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Figure 8. Winsorizing: Non-normal Distributions
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A.1.4 Winsorizing, Share of Winsorized Observations

Table 4: Winsorized Variables - Both Tails

Traditional Approach Stratified | Paired t-test KS-Test
To Trim. Trimming p-value p-value
A. Average Distance from Non-Winsorized Value
Entire Sample 0.772 0.710 0.000 0.000
(0.001) (0.001)
Control 0.730 0.710 0.000 0.000
(0.002) (0.002)
Treatment 0.731 0.711 0.000 0.000
(0.002) (0.002)
B. Share of Winsorized Observations from Treatment
Treatment 0.500 0.500 0.988 0.000
(0.002) (0.000)
Notes: Standard errors are reported in brackets. Data is based on the 10,000 simulations underlying Figure 4c.
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A.1.5 Trimming, Normal Distribution
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Figure 9. Trimming: Normal Distribution
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A.1.6 Trimming, Non-Normal Distribution
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Figure 10. Trimming: Non-normal Distributions
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A.2 Statistical Power
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Figure 11. Effects of Trimming on Power Calculations
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A.2.2 Percentage of Simulations with Improved Statistical Power

Tables 5 and 6 present the percentage of simulations in which the study’s statistical power
was reduced as a result of winsorizing and trimming - both the traditional and stratified
approach - compared with no data manipulation. The findings suggest that it is very rare
that Stratified Winsorizing/Trimming reduces a study’s statistical power (less than 0.1%
of cases), both compared with the traditional approach to winsorizing/trimming, and no
winsorizing/trimming. On the other hand, the traditional approach to winsorizing and
trimming frequently reduces a study’s statistical power compared with no winsorizing or

trimming, happening in 26% and 83% of cases, respectively.
Table 5: Percentage of Simulations with Improved Statistical Power

Winsorizing
A. % of simulations where Strat. W/T reduced statistical

power compared with Trad. W/T
0.08

B. % of simulations where Strat. W/T reduced statistical
power compared with No W/T

0.05
C. % of simulations where Trad. W/T reduced statistical
power compared with No W/T

25.88

Notes: Standard errors are reported in brackets. Data is based on the each of the
1000 simulations underlying each sub-Figure of Figure 6, summed together.

Table 6: Percentage of Simulations with Improved Statistical Power

Trimming
A. % of simulations where Strat. W/T reduced statistical

power compared with Trad. W/T
0.00

B. % of simulations where Strat. W/T reduced statistical
power compared with No W/T

0.00
C. % of simulations where Trad. W/T reduced statistical

power compared with No W/T
83.05

Notes: Data is based on the each of the 1000 simulations underlying each sub-
Figure of Figure 11, summed together.
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A.3 Type I Errors

Table 7: Frequency of Type I Errors

Normal Log-Normal Skew-Normal Gamma

Distr. Distr. Distr. Distr.
B. Trimming
No Trim 0.050 0.048 0.050 0.050
Traditional Trim. 0.050 0.050 0.050 0.050
Stratified Trim. 0.104 0.122 0.097 0.108
p-value No vs. Trad. 0.56 0.00 0.92 0.60
p-value No vs. Strat. 0.00 0.00 0.00 0.00
p-value Trad vs. Strat. 0.00 0.00 0.00 0.00
B. Percentage of No Trim Type I errors included
Traditional Trim. 38.13 23.05 42.12 34.80
Stratified Trim. 99.75 89.62 99.89 99.00
p-value Trad vs. Strat. 0.00 0.00 0.00 0.00
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B Theory

B.1 Biased Treatment Effect

A researcher is interested in the relationship between Treatment 7" and outcome variable
Y*, where T; = {0, 1}, with 7; = 1 is the treatment group, and 7; = 0 is the control group.
However, Y;* contains white-noise measurement error 7y, and hence the researcher only
observes Y;, where Y; = Y;* 4+ ny. The measurement error is uncorrelated with treatment
status (Cov(ny,T;) = 0). As such, the estimated regression can thus be written as Y; =
61T; + &; + ny, which generates an unbiased estimate 31 of the true 51 as Cov(e;, T;) = 0.

e
Hence a white-noise measurement error in the outcome variable does not result in a biased

estimate of the treatment effect.

B.1.1 Traditional Approach to Trimming

The researcher trims a share of the data, due to the fear that outliers are driving the
estimates of 81.'Y Hence the final outcome variable observed, and used by the researcher
in their analysis, is Y = Y* + ny + np, where nr is the bias emerging as a result of
trimming. The traditional approach to trimming can differentially trim the treatment
and control groups. Therefore, Cov(nr,T;) # 0.

The estimated regression is thus: Y; = 517T; +nr+¢; + ny, and the estimate 51 equals:

€i

A Cov(Y;, T;) Var(T;)  Cov(np,T;)  Cov(e;, T;) Cov(nr, T;)
fi= =0 : : N =Bt
Var(T;) Var(T;) Var(T;) Var(T;) Var(T;)
.\;éo
bias

Hence the use of trimming can result in a biased treatment effect estimate. This is because

the trimming induced bias is correlated with the treatment assignment.

B.1.2 Stratified Trimming by Treatment

When Stratified Trimming by Treatment is used rather than trimming the entire sample,
the final outcome variable observed and used by the researcher in their analysis is Y; =
Y.* +ny 4+ nster, where ngryr is the bias as a result of Stratified Trimming by Treatment,
with Cov(nsryr, T;) = 0.

9The conclusions are identical for winsorizing, expect that the selection bias is likely to be
smaller as observations are not dropped, merely replaced.
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The estimated regression is thus: Y; = 517; + nryr + €; + 1y, and thus the estimate
~—
€
31 equals:
s Cou(Y;,T;)  , Var(Ty)  Cov(nster,Ti) | Cov(e;, T;)

b= Var(T; =8 Var(T,-)+ Var(T;) + Var(T;) =5

While Cov(nsrer, T;) = 0 is a strong assumption that does not necessarily always hold,
so long as Cov(nsryr, T;) < Cov(nr,T;), Stratified Trimming by Treatment will result in a

lower bias on the treatment effect estimate (51) than the traditional approach to trimming.

B.2 Type II Errors and Statistical Power

Trimming and winsorizing can also be used to improve a study’s statistical power. By
reducing the role of outliers, the variance of the distribution gets smaller, and hence
statistical power increases. This is shown by the formula for the Minimum Detectable

Effect (MDE), where a smaller value means higher power:

MDE = (t1_ + ta) U—(%Jrai (1)
Ve ng M

The traditional approach to trimming improves statistical power by reducing the variance
of the control and treatment group (o2 and %), but also worsens power by decreasing each

20" Stratified Trimming by Treatment can have differential

group’s sample size (ng and ny).
effects on statistical power compared with the traditional approach to trimming, because
it ensures that the tails of the distributions of both treatments are trimmed, while this
is not guaranteed in the traditional approach to trimming. However, as illustrated in
Figure 4, Stratified Trimming by Treatment can trim observations that are outliers of the
Control or Treatment distributions, but are close to the mean of the entire sample. This
can increase the variance of the sample’s distribution. These two forces are counteracting,
and hence it is unclear ex ante whether Stratified Trimming by Treatment improves or
worsens a study’s statistical power compared with the traditional approach to trimming.

Unlike the traditional approach to trimming, Stratified Trimming by Treatment ensures
that proportionate shares of control and treatment groups are removed from the sample
(see Section 3.1.1). Assuming the researchers divided the sample size across treatment and
control to maximize statistical power (if there are two groups, then P = 0.5), Stratified

Trimming by Treatment ensures the ratio between treatment and control is unchanged,

20Winsorizing does not result in a smaller sample size.
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which improves statistical power.

B.2.1 Standard Errors

The standard error of §; (in a regression Y; = o+ 1 - T} + ¢;) is given by the following

SB() =\ [y @)

where s? is the estimate of the error variance, given by s% = %Sg, with RSS standing for
the Residual Sum of Squares (RSS = Y (y; — 9:)?, with gj; being the predicted value of

y for observation 7). Measurement errors result in a larger Standard Error, as the RSS

formula:

becomes larger due to the additional error term introduced (ny). Winsorizing/Trimming
aims to reduce the RSS, resulting in a smaller Standard Error. Comparing the effects of
the traditional approach to winsorizing/trimming versus Stratified Winsorizing/ Trimming
by Treatment does not highlight a clear winner. In some instances, Stratified Winsoriz-
ing/ Trimming by Treatment will result in a smaller RSS, and in other instances a larger
RSS. This is also supported by the applications to Augsburg et al. (2015), Angelucci et al.
(2023), Schilbach (2019) and Jack et al. (2023) in Section 4 and Appendix D, where the
standard errors in Panel A (the traditional approach to winsorizing/trimming) are some-
times larger, and other times smaller than the standard errors in Panels B and C (Stratified

Winsorizing/ Trimming by Treatment & Treatment*TimePeriod).
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C Trimming Code

Researchers must decide along which dimension to stratify their trimming. In case of
stratification along multiple variables (e.g., treatment status and survey round), a new

variable needs to first be created that encodes this new strata.

C.1 Stata

Traditional approach to trimming:’! winsor2 OutcomeVar, cuts(5 95) trim
Stratified Trimming: winsor2 QutcomeVar, cuts(5 95) by(Stratified Variable) trim

C.2 R
Using the newly created package called WinsorByGroupR (see GitHub repository here):
Traditional approach to trimming: trim(data, value_col = “OutcomeVar”, bounds
= ¢(5, 95))

Stratified trimming: trim_ by group(data, group_ col = “Stratified Variable”, value_ col
= “QutcomeVar”, bounds = ¢(5, 95))

21This code trims OutcomeVar at the 5th and 95th percentile.
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D Applications to Schilbach (2019) and Augsburg
et al. (2015)

D.1 Schilbach (2019)

Schilbach (2019) conducted an RCT among cycle-rickshaw drivers in India, offering dif-
ferent monetary incentives for sobriety. The study included three groups: one receiving
unconditional payments ( Control), another receiving payments contingent on sobriety (In-
centive), and a third group choosing their preferred incentive structure (Choice).

Table 8(i) replicates the findings in Table A.10 of Schilbach (2019) using the tradi-
tional winsorization technique (Panel A), and the Stratified Winsorizing per Treatment
approach (Panel B). Both coefficients as well as their significance level increase as a result
of the stratified approach to winsorization. Table 8(ii) captures the share of the three
experimental conditions that are winsorized using both techniques. Compared with the
traditional approach to winsorizing, Stratified Winsorizing per Treatment winsorizes less
of the control group, and more of the Choice treatment arm.?> As Table 8(ii) illustrates,
Stratified Winsorizing by Treatment decreases the discrepancy in the percentage of ob-
servations winsorized across the three experimental arms. This impacts treatment effect
estimates, however to a smaller extent than previous applications. As such, this presents
a case where the two approaches to winsorizing illustrate the robustness of the treatment

effect estimates to the chosen winsorizing technique.

D.2 Augsburg et al. (2015)

Augsburg et al. (2015) conduct an RCT in Bosnia and Herzegovina to evaluate the impact
of microcredit loans, offered to loan applicants that were otherwise marginally rejected by
a microfinance institution. The authors document an increase in profits, but no change in
overall household income. To ensure outliers are not driving the results, the authors trim
1-3% of the right-tail of the outcome variables’ distribution.

Table 9 reproduces Appendix Table A.10 from Augsburg et al. (2015), using both the
traditional approach to trimming - the technique deployed by the authors - (Panel A), and
Stratified Trimming by Treatment (Panel B). Table 9.(i) reports the OLS estimates of the

estimated treatment effect of being offered a microfinance loan in Bosnia and Herzegovina,

228chilbach (2019) winsorizes at both the left and right tail - however the winsorizing process
only winsorizes the left tail of the distribution, as 6.39% of the respondents reported having the
highest level of savings. Therefore, the intuition is the same as in Figure 3.
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on the respondents’ assets, business, and income.

Panel B is emphasized to indicate cases where the statistical significance of the treat-
ment effect increased (in bold) and decreased (underlined) as a result of Stratified Trim-
ming by Treatment, compared with the traditional approach to trimming. Overall, Strat-
ified Trimming by Treatment improves the statistical significance of treatment effect es-
timates, however it can also reduce the statistical significance of estimates, particularly
when 1% of the sample is trimmed. The interpretation of the effect of the microloan on
business expenses, revenues, and profits does not change, but the treatment effect sizes
increase by 77%, 87%, and 32%, respectively as a result of 3% Stratified Trimming by
Treatment. The interpretation of the effect of microloans on income changes as a result
of Stratified Trimming by Treatment: the treatment effect on welfare benefits is now sta-
tistically significantly negative, while it is a null result under the traditional approach to
trimming.

To understand why Stratified Trimming by Treatment can improve or worsen an esti-
mate’s statistical significance, Table 9.(ii) reports the fraction of observations from treat-
ment and control groups that are trimmed, separately for the traditional approach to
trimming (Panel C), and Stratified Trimming by Treatment (Panel D). Again, these are
emphasized in Panel D, with bold values representing cases in which Stratified Trimming
by Treatment improved the statistical significance of the treatment effect, and underlined
values representing cases where the statistical significance worsened as a result of Stratified
Trimming by Treatment.

Columns (1) - (4) in Table 9 document regressions in which the Treatment has a posi-
tive treatment effect. Panel C illustrates that treatment and control group observations are
trimmed disproportionately under the traditional approach to trimming. This discrepancy
in the trimming of treatment and control observations is reduced in Stratified Trimming
by Treatment, see Panel D. The cases in which Stratified Trimming by Treatment improves
the statistical significance of treatment effects in Panel B (in bold) also correspond to
the cases where Stratified Trimming by Treatment reduces the discrepancy between the
share of trimmed right-tail observations from control and treatment, by decreasing the
fraction of trimmed Treatment observations, increasing the fraction of trimmed control
observations, or both (Table 9, Panel D). By trimming fewer right-tailed observations of
the treatment group, the mean of the treatment group’s distribution increases, and the dif-
ference between treatment and control increases. Similarly, by trimming more right-tailed
observations of the control group, the mean of the control group’s distribution decreases.
The intuition is the same underlying Figure 3.

The cases in which Stratified Trimming by Treatment reduces the statistical significance
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of treatment effect estimates in Table 9.(i) Panel B (underlined) are the cases where the
traditional approach to trimming, “under-trims” the treatment group. Stratified Trimming
by Treatment brings the fraction of trimmed observations in the treatment group closer
to the fraction of trimmed observations in the control group.?

Columns (5) - (7) of Table 9.(i) report negative treatment effects of microfinance on
household income. In this case, the effect is reversed: Stratified Trimming by Treatment
increases the fraction of trimmed right-tail observations from the treatment group, or
reduces the fraction of trimmed observations from the control group (Table 9.(ii), Panel
D, Column (7)). By trimming more right-tailed observations of the treatment group, the
mean of the treatment group’s distribution decreases, and the difference between treatment
and control increases. Similarly, by trimming fewer right-tailed observations of the control
group, the mean of the control group’s distribution increases.

The cases where the coefficient estimates in Panels A and B are the same (Column
(6)) or don’t change a statistically significant amount (Columns (1) and (5)) are due to
standard errors being very large, or Stratified Trimming by Treatment not changing the

share of trimmed observations that are from the treatment group substantially.?*

23In the simulations, Stratified Trimming ensured the fraction of Treatment observations that
were trimmed was always equal to the fraction of Control observations that were trimmed. With
the data from existing papers, this is not always be the case, due to the structure of the data. For
example, if the researcher wants to trim the lower 5%, however the bottom 10% of observations
take the value of 0, no trimming will occur.

24The trimmed share of treatment and control in Column (6) is identical for the traditional
trimming approach, and Stratified Trimming by Treatment. This is due to a spike in observations
at the 99.55th percentile in the control group, and hence fewer observations get trimmed.
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Table 8: Schilbach (2019), Table A.10
Table 8.(1) OLS Treatment Effect Estimates

Dependent variable: Amount
saved at study office (Rs./day)

Fraction of winsorized data: 0% 1% 2%

(1) (2) (3)

A. Traditional Winsorizing

Incentives 11.28  13.43* 12.08*
(6.22)  (5.42) (5.13)

Choice 16.62**  16.19** 15.09**
(5.58)  (5.17) (4.97)

B. Stratified Winsorizing by Treatment

Incentives 11.28  13.43* 12.16*
(6.22)  (5.43) (5.13)

Choice 16.62**  17.13** 16.65***
(5.58)  (5.15) (4.95)

Table 8.(ii) % of Treat. and Control Obs. Winsorized
Fraction of winsorized data: 0% 1% 2%

(1) (2) (3)

C. Traditional Winsorizing

% of Control Obs. Winsorized 0.57 1.01
% of Incentives Obs. Winsorized 0.44 0.59
% of Choice Obs. Winsorized 0.35 0.56
D. Stratified Winsorizing by Treatment

% of Control Obs. Winsorized 0.44 0.89
% of Incentives Obs. Winsorized 0.44 0.59
% of Choice Obs. Winsorized 0.42 0.98

Notes: Standard errors are in parentheses. Stratified Winsorizing by Treatment winsorizes the sample separately
for the three experimental arms, while Traditional Winsorizing winsorizes the entire sample. Results are reported
without corrections for multiple hypothesis testing. * p<0.1, ** p<0.05, *** p<0.01
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Table 9: Augsburg et al. (2015), Table A.10

Table 9.(i) OLS Treatment Effect Estimates

Assets & Business Income
(1) (2) ®3) (4) (5) (6) (7
Asset Value Busi. Expenses Busi. Revenues Busi. Profits | Wages Remittances Benefits
A. Traditional Trimming
1% Trim 2,265 552.7%* 1,539** 858.9%* -235.5 -41.27 -94.58
[6,326] (249.8] (639.1] [405.3] [446.3] [84.73] [64.61]
2% Trim -2,451 323.4%* 1,032%* 896.7%* -236.6 -0.719 -54.03
[5,878] (159.2] [470.7] [351.2] [409.6] [68.38] [58.61]
3% Trim -414.5 260.8%* 744.1% 648.0%* -346.7 18.85 -45.11
[5,390] [129.4] [403.1] [301.5] [395] [65.64] [52.42]
B. Stratified Trimming by Treatment
1% Trim -3,963 467.1* 1,368%* 672.3* 9.597 -41.27 -140.4**
[6,626] [263.8] [661.2] [384.7] [455.3] [84.73] [66.52]
2% Trim -2,451 548.3%** 1,316%** 751.1%* -69.56 -0.719 -135.0**
[5,878] (180.8] [477.5] [309.7] [411.3] [68.38] [60.52]
3% Trim -1,861 462.9%** 1,393%** 853.4*** | _106.3 18.85 -117.6**
[5,464] (134.5] [434.3] [284.4] [397.2] [65.64] [55.18]
Table 9.(ii) % of Treatment and Control Observations Trimmed
Assets & Business Income
1) (2) 3) (4) (5) (6) (7
Asset Value Busi. Expenses Busi. Revenues Busi. Profits | Wages Remittances Benefits
C. Traditional Trimming
C.1 1% Trim
% of Control Obs. Trimmed 1.23 0.88 0.88 0.70 0.53 0.35 1.23
% of Treat. Obs. Trimmed 0.32 0.64 0.64 0.48 1.12 0.80 0.32
C.2 2% Trim
% of Control Obs. Trimmed 1.41 1.23 1.23 1.06 1.23 1.23 2.11
% of Treat. Obs. Trimmed 1.59 1.75 1.75 0.80 2.07 1.28 0.64
C.3 3% Trim
% of Control Obs. Trimmed 2.29 1.58 1.58 1.41 1.76 1.23 2.82
% of Treat. Obs. Trimmed 2.23 2.55 2.87 1.91 3.19 1.28 1.44
D. Stratified Trimming by Treatment
D.11% Trim
% of Control Obs. Trimmed 0.70 0.70 0.70 0.70 0.70 0.35 0.70
% of Treat. Obs. Trimmed 0.80 0.64 0.64 0.80 0.80 0.80 0.64
D.2 2% Trim
% of Control Obs. Trimmed 1.41 1.41 1.41 141 1.41 1.06 1.41
% of Treat. Obs. Trimmed 1.59 1.28 1.44 1.59 1.59 2.18 1.44
D.3 3% Trim
% of Control Obs. Trimmed 2.11 2.11 1.94 2.11 2.11 1.23 2.11
% of Treat. Obs. Trimmed 2.39 1.91 1.75 1.91 2.39 1.28 2.23
Notes: An 1% trim means the top 1 percentile of observations have been lxlmmed similarly for the 2% and 3% trims. Standard errors are reported in brackets. Covariates included. on \mn respondent,
except income from self employment (household). BAM: Bosnia and Hei ina convertible mark. The exchange rate at baseline was US$1 to BAM 1.634. Strati l ed Trimm] ms the sample
sL,pquuL((.ly for treatment and control, while Traditional Tmnm.m, trims mL entire sample. Results are reported without corrections for multiple hypothesis testing. * p<0.1, ** p<a uo, p<0 01
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